Toni K. Träger, Christian Tüting, Panagiotis L. Kastritis
{"title":"人情味利用 AlphaFold 3 分析内源性代谢物的结构","authors":"Toni K. Träger, Christian Tüting, Panagiotis L. Kastritis","doi":"10.1016/j.str.2024.08.018","DOIUrl":null,"url":null,"abstract":"<p>Computational structural biology aims to accurately predict biomolecular complexes with AlphaFold 3 spearheading the field. However, challenges loom for structural analysis, especially when complex assemblies such as the pyruvate dehydrogenase complex (PDHc), which catalyzes the link reaction in cellular respiration, are studied. PDHc subcomplexes are challenging to predict, particularly interactions involving weaker, lower-affinity subcomplexes. Supervised modeling, i.e., integrative structural biology, will continue to play a role in fine-tuning this type of prediction (e.g., removing clashes, rebuilding loops/disordered regions, and redocking interfaces). 3D analysis of endogenous metabolic complexes continues to require, in addition to AI, precise and multi-faceted interrogation methods.</p>","PeriodicalId":22168,"journal":{"name":"Structure","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The human touch: Utilizing AlphaFold 3 to analyze structures of endogenous metabolons\",\"authors\":\"Toni K. Träger, Christian Tüting, Panagiotis L. Kastritis\",\"doi\":\"10.1016/j.str.2024.08.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Computational structural biology aims to accurately predict biomolecular complexes with AlphaFold 3 spearheading the field. However, challenges loom for structural analysis, especially when complex assemblies such as the pyruvate dehydrogenase complex (PDHc), which catalyzes the link reaction in cellular respiration, are studied. PDHc subcomplexes are challenging to predict, particularly interactions involving weaker, lower-affinity subcomplexes. Supervised modeling, i.e., integrative structural biology, will continue to play a role in fine-tuning this type of prediction (e.g., removing clashes, rebuilding loops/disordered regions, and redocking interfaces). 3D analysis of endogenous metabolic complexes continues to require, in addition to AI, precise and multi-faceted interrogation methods.</p>\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2024.08.018\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.08.018","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The human touch: Utilizing AlphaFold 3 to analyze structures of endogenous metabolons
Computational structural biology aims to accurately predict biomolecular complexes with AlphaFold 3 spearheading the field. However, challenges loom for structural analysis, especially when complex assemblies such as the pyruvate dehydrogenase complex (PDHc), which catalyzes the link reaction in cellular respiration, are studied. PDHc subcomplexes are challenging to predict, particularly interactions involving weaker, lower-affinity subcomplexes. Supervised modeling, i.e., integrative structural biology, will continue to play a role in fine-tuning this type of prediction (e.g., removing clashes, rebuilding loops/disordered regions, and redocking interfaces). 3D analysis of endogenous metabolic complexes continues to require, in addition to AI, precise and multi-faceted interrogation methods.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.