Xueyang Tang, Yi Wang, Xiaopei Cai, Fei Yang, Yue Hou
{"title":"基于无监督学习框架的高速铁路无砟轨道起拱诊断","authors":"Xueyang Tang, Yi Wang, Xiaopei Cai, Fei Yang, Yue Hou","doi":"10.1111/mice.13342","DOIUrl":null,"url":null,"abstract":"Vehicle-mounted detection methods have been widely applied in the maintenance of high-speed railways (HSRs), providing feasibility for diagnosing ballastless track arching. However, applying detection data faces several key limitations: (1) The threshold mostly requires manual setting, making recognition accuracy highly subjective; (2) the extensive workload of manual inspections makes it challenging to label detection data, hindering the application of supervised learning approaches. To address these problems, this paper utilizes the longitudinal level irregularity data obtained from vehicle-mounted detection, employing the concept of unsupervised learning for dimensionality reduction, combined with clustering algorithms and minimal label fine-tuning, to design two frameworks: the fully unsupervised framework (FUF) and the few-shot fine-tuned framework (FFF). Experiments on dynamic detection data from a Chinese HSR line were conducted, comparing the performance of data dimensionality reduction, clustering, and classification under different strategy combinations. The results show that the improved variational autoencoder significantly enhances the performance of the encoder in dimensionality reduction, facilitating better feature extraction; the FUF achieves effective clustering outcomes without any labeled samples and its adjusted rand index score exceeded 0.8, showcasing its robustness and applicability in scenarios with no prior annotations; the FFF requires only a small number of labeled samples (labeling ratio of 5%) and achieves excellent performance, with metrics such as accuracy exceeding 0.85, thus greatly reducing the reliance on labeled data. This study offers a novel method for solving engineering issues with limited labeled data, providing an efficient solution for identifying track arching defects and advancing railway infrastructure monitoring.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"196 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnosis of high-speed railway ballastless track arching based on unsupervised learning framework\",\"authors\":\"Xueyang Tang, Yi Wang, Xiaopei Cai, Fei Yang, Yue Hou\",\"doi\":\"10.1111/mice.13342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle-mounted detection methods have been widely applied in the maintenance of high-speed railways (HSRs), providing feasibility for diagnosing ballastless track arching. However, applying detection data faces several key limitations: (1) The threshold mostly requires manual setting, making recognition accuracy highly subjective; (2) the extensive workload of manual inspections makes it challenging to label detection data, hindering the application of supervised learning approaches. To address these problems, this paper utilizes the longitudinal level irregularity data obtained from vehicle-mounted detection, employing the concept of unsupervised learning for dimensionality reduction, combined with clustering algorithms and minimal label fine-tuning, to design two frameworks: the fully unsupervised framework (FUF) and the few-shot fine-tuned framework (FFF). Experiments on dynamic detection data from a Chinese HSR line were conducted, comparing the performance of data dimensionality reduction, clustering, and classification under different strategy combinations. The results show that the improved variational autoencoder significantly enhances the performance of the encoder in dimensionality reduction, facilitating better feature extraction; the FUF achieves effective clustering outcomes without any labeled samples and its adjusted rand index score exceeded 0.8, showcasing its robustness and applicability in scenarios with no prior annotations; the FFF requires only a small number of labeled samples (labeling ratio of 5%) and achieves excellent performance, with metrics such as accuracy exceeding 0.85, thus greatly reducing the reliance on labeled data. This study offers a novel method for solving engineering issues with limited labeled data, providing an efficient solution for identifying track arching defects and advancing railway infrastructure monitoring.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"196 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13342\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13342","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Diagnosis of high-speed railway ballastless track arching based on unsupervised learning framework
Vehicle-mounted detection methods have been widely applied in the maintenance of high-speed railways (HSRs), providing feasibility for diagnosing ballastless track arching. However, applying detection data faces several key limitations: (1) The threshold mostly requires manual setting, making recognition accuracy highly subjective; (2) the extensive workload of manual inspections makes it challenging to label detection data, hindering the application of supervised learning approaches. To address these problems, this paper utilizes the longitudinal level irregularity data obtained from vehicle-mounted detection, employing the concept of unsupervised learning for dimensionality reduction, combined with clustering algorithms and minimal label fine-tuning, to design two frameworks: the fully unsupervised framework (FUF) and the few-shot fine-tuned framework (FFF). Experiments on dynamic detection data from a Chinese HSR line were conducted, comparing the performance of data dimensionality reduction, clustering, and classification under different strategy combinations. The results show that the improved variational autoencoder significantly enhances the performance of the encoder in dimensionality reduction, facilitating better feature extraction; the FUF achieves effective clustering outcomes without any labeled samples and its adjusted rand index score exceeded 0.8, showcasing its robustness and applicability in scenarios with no prior annotations; the FFF requires only a small number of labeled samples (labeling ratio of 5%) and achieves excellent performance, with metrics such as accuracy exceeding 0.85, thus greatly reducing the reliance on labeled data. This study offers a novel method for solving engineering issues with limited labeled data, providing an efficient solution for identifying track arching defects and advancing railway infrastructure monitoring.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.