表面羟基主导室温以下甲烷的有氧氧化作用†.

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2024-09-18 DOI:10.1039/D4EE03508A
Baiyang Yu, Lu Cheng, Jiaju Wu, Bing Yang, Hong Li, Jing Xu, Ying Zhang, Chengsi Pan, Xiao-Ming Cao, Yongfa Zhu and Yang Lou
{"title":"表面羟基主导室温以下甲烷的有氧氧化作用†.","authors":"Baiyang Yu, Lu Cheng, Jiaju Wu, Bing Yang, Hong Li, Jing Xu, Ying Zhang, Chengsi Pan, Xiao-Ming Cao, Yongfa Zhu and Yang Lou","doi":"10.1039/D4EE03508A","DOIUrl":null,"url":null,"abstract":"<p >Direct oxidation of methane (DOM) using molecular oxygen (O<small><sub>2</sub></small>) and hydrogen (H<small><sub>2</sub></small>) is currently considered to be triggered by <em>in situ</em> produced H<small><sub>2</sub></small>O<small><sub>2</sub></small> or free hydroxyl radicals (˙OH). However, the role of the surface hydroxyl group in the DOM that is <em>in situ</em> formed from O<small><sub>2</sub></small> and H<small><sub>2</sub></small> has long been ignored. Herein, we provide experimental evidence that DOM using H<small><sub>2</sub></small> and O<small><sub>2</sub></small> over titanium silicate-supported single Pd atoms coated with an ultrathin N-doped carbon (Pd<small><sub>1</sub></small>/TS-1@CN) catalyst is dominated by a surface hydroxyl group instead of H<small><sub>2</sub></small>O<small><sub>2</sub></small> or free ˙OH. Furthermore, the direct bonding between Pd atoms with the pyrrolic nitrogen of the coating layers reinforces the bonding strength of Pd<small><sub>1</sub></small> and framework oxygen, forming a unique N<small><sub>1</sub></small>–Pd<small><sub>1</sub></small>–O<small><sub>2</sub></small> configuration that considerably boosts the stability of isolated Pd active sites and their capability to stably generate a surface hydroxyl group from H<small><sub>2</sub></small> and O<small><sub>2</sub></small>. Therefore, Pd<small><sub>1</sub></small>/TS-1@CN yields a liquid oxygenate productivity of 647 μmol g<small><sub>cat</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small> with 100% selectivity at 15 °C and high stability over 30 cycles with no activity loss. Our findings regarding the catalytic role of the surface hydroxyl group in DOM and its stabilization strategy open up a new avenue for designing advanced catalysts for the DOM using O<small><sub>2</sub></small> under mild reaction conditions.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 21","pages":" 8127-8139"},"PeriodicalIF":32.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface hydroxyl group dominating aerobic oxidation of methane below room temperature†\",\"authors\":\"Baiyang Yu, Lu Cheng, Jiaju Wu, Bing Yang, Hong Li, Jing Xu, Ying Zhang, Chengsi Pan, Xiao-Ming Cao, Yongfa Zhu and Yang Lou\",\"doi\":\"10.1039/D4EE03508A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Direct oxidation of methane (DOM) using molecular oxygen (O<small><sub>2</sub></small>) and hydrogen (H<small><sub>2</sub></small>) is currently considered to be triggered by <em>in situ</em> produced H<small><sub>2</sub></small>O<small><sub>2</sub></small> or free hydroxyl radicals (˙OH). However, the role of the surface hydroxyl group in the DOM that is <em>in situ</em> formed from O<small><sub>2</sub></small> and H<small><sub>2</sub></small> has long been ignored. Herein, we provide experimental evidence that DOM using H<small><sub>2</sub></small> and O<small><sub>2</sub></small> over titanium silicate-supported single Pd atoms coated with an ultrathin N-doped carbon (Pd<small><sub>1</sub></small>/TS-1@CN) catalyst is dominated by a surface hydroxyl group instead of H<small><sub>2</sub></small>O<small><sub>2</sub></small> or free ˙OH. Furthermore, the direct bonding between Pd atoms with the pyrrolic nitrogen of the coating layers reinforces the bonding strength of Pd<small><sub>1</sub></small> and framework oxygen, forming a unique N<small><sub>1</sub></small>–Pd<small><sub>1</sub></small>–O<small><sub>2</sub></small> configuration that considerably boosts the stability of isolated Pd active sites and their capability to stably generate a surface hydroxyl group from H<small><sub>2</sub></small> and O<small><sub>2</sub></small>. Therefore, Pd<small><sub>1</sub></small>/TS-1@CN yields a liquid oxygenate productivity of 647 μmol g<small><sub>cat</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small> with 100% selectivity at 15 °C and high stability over 30 cycles with no activity loss. Our findings regarding the catalytic role of the surface hydroxyl group in DOM and its stabilization strategy open up a new avenue for designing advanced catalysts for the DOM using O<small><sub>2</sub></small> under mild reaction conditions.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 21\",\"pages\":\" 8127-8139\"},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee03508a\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee03508a","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用分子氧(O2)和氢(H2)直接氧化甲烷(DOM)目前被认为是由原位产生的 H2O2 或游离羟基自由基(-OH)引发的。然而,由 O2 和 H2 在原位形成的 DOM 中表面羟基的作用长期以来一直被忽视。在此,我们提供了实验证据,证明在硅酸钛支撑的单钯原子包覆超薄掺杂 N 的碳(Pd1/TS-1@CN)催化剂上使用 H2 和 O2 生成的 DOM 是由表面羟基而不是 H2O2 或游离 -OH 主导的。此外,Pd 原子与涂层层吡咯烷酮氮之间的直接键合加强了 Pd1 与框架氧的键合强度,形成了独特的 N1-Pd1-O2 构型,大大提高了孤立 Pd 活性位点的稳定性及其从 H2 和 O2 稳定生成表面羟基的能力。因此,Pd1/TS-1@CN 在 15 °C 时可产生 647 μmol-gcat-1-h-1 的液态含氧化合物,具有 100% 的选择性,并且在 30 个循环中保持高度稳定性,活性没有降低。我们关于 DOM 表面羟基的催化作用及其稳定策略的发现,为在温和的反应条件下利用 O2 设计先进的 DOM 催化剂开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface hydroxyl group dominating aerobic oxidation of methane below room temperature†

Direct oxidation of methane (DOM) using molecular oxygen (O2) and hydrogen (H2) is currently considered to be triggered by in situ produced H2O2 or free hydroxyl radicals (˙OH). However, the role of the surface hydroxyl group in the DOM that is in situ formed from O2 and H2 has long been ignored. Herein, we provide experimental evidence that DOM using H2 and O2 over titanium silicate-supported single Pd atoms coated with an ultrathin N-doped carbon (Pd1/TS-1@CN) catalyst is dominated by a surface hydroxyl group instead of H2O2 or free ˙OH. Furthermore, the direct bonding between Pd atoms with the pyrrolic nitrogen of the coating layers reinforces the bonding strength of Pd1 and framework oxygen, forming a unique N1–Pd1–O2 configuration that considerably boosts the stability of isolated Pd active sites and their capability to stably generate a surface hydroxyl group from H2 and O2. Therefore, Pd1/TS-1@CN yields a liquid oxygenate productivity of 647 μmol gcat−1 h−1 with 100% selectivity at 15 °C and high stability over 30 cycles with no activity loss. Our findings regarding the catalytic role of the surface hydroxyl group in DOM and its stabilization strategy open up a new avenue for designing advanced catalysts for the DOM using O2 under mild reaction conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
Enhanced bipolar membrane for durable ampere-level water electrolysis Intermediate Phase In-situ Self-reconstruction of Amorphous NASICON for Long-life Solid-state Sodium Metal Batteries Inhibiting cathode dissolution and shuttling of V-O species by a polybenzimidazole hydrogel electrolyte for durable high-areal-capacity Zn-V2O5 batteries A facile route to plastic inorganic electrolytes for all-solid state batteries based on molecular design Simultaneously improving the efficiencies of organic photovoltaic devices and modules by finely manipulating the aggregation behaviors of Y-series molecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1