Mayura Veerana, Sohail Mumtaz, Juie Nahushkumar Rana, Rida Javed, Kamonporn Panngom, Bilal Ahmed, Khadija Akter, Eun Ha Choi
{"title":"非热等离子体在种子发芽、植物生长和次生代谢物合成方面的最新进展:可持续农业的前景广阔","authors":"Mayura Veerana, Sohail Mumtaz, Juie Nahushkumar Rana, Rida Javed, Kamonporn Panngom, Bilal Ahmed, Khadija Akter, Eun Ha Choi","doi":"10.1007/s11090-024-10510-7","DOIUrl":null,"url":null,"abstract":"<div><p>Sustainable agriculture requires the exploration and development of eco-friendly technologies to increase crop production. From the last few decades, nonthermal atmospheric pressure plasma (NTAPP) based technology appears as an encouraging frontier in this quest. NTAPP with low temperature and energetic gas-phase chemistry offers potential applications to promote seed germination rate and plant growth. It initiates a cascade of biological responses at molecular levels inside the seed as well as in plants, greater nutrient uptake, elevated antioxidant activity, and pathogen control to ensure improved germination, seedling growth, plant growth, and increased harvesting. NTAPP technology has become more popular and convenient in agriculture due to its potential to produce plasma-activated water (PAW), which harnesses useful reactive species with PAW irrigation to promote plant growth. Recent advancements in NTAPP technology and its applications to promote seed germination, seedling growth, plant growth, and metabolite synthesis were summarized in this review. We delve deeper to examine the possible mechanisms that underlie the involvement of reactive species from NTAPP, surface interactions, and gene expression regulation. We also have discussed the applications of NTAPP in seed priming, pre-planting treatments, and disease control for food preservation. For sustainable agriculture, NTAPP stands out as an eco-friendly technology with the potential to revolutionize crop production of the modern age. Many researchers proved that NTAPP reduces the need for agrochemicals and presents a viable path toward sustainable agriculture. This review will provide recent progress by outlining major challenges and shaping future directions for harnessing the potential of NTAPP in agriculture.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 6","pages":"2263 - 2302"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Non-Thermal Plasma for Seed Germination, Plant Growth, and Secondary Metabolite Synthesis: A Promising Frontier for Sustainable Agriculture\",\"authors\":\"Mayura Veerana, Sohail Mumtaz, Juie Nahushkumar Rana, Rida Javed, Kamonporn Panngom, Bilal Ahmed, Khadija Akter, Eun Ha Choi\",\"doi\":\"10.1007/s11090-024-10510-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sustainable agriculture requires the exploration and development of eco-friendly technologies to increase crop production. From the last few decades, nonthermal atmospheric pressure plasma (NTAPP) based technology appears as an encouraging frontier in this quest. NTAPP with low temperature and energetic gas-phase chemistry offers potential applications to promote seed germination rate and plant growth. It initiates a cascade of biological responses at molecular levels inside the seed as well as in plants, greater nutrient uptake, elevated antioxidant activity, and pathogen control to ensure improved germination, seedling growth, plant growth, and increased harvesting. NTAPP technology has become more popular and convenient in agriculture due to its potential to produce plasma-activated water (PAW), which harnesses useful reactive species with PAW irrigation to promote plant growth. Recent advancements in NTAPP technology and its applications to promote seed germination, seedling growth, plant growth, and metabolite synthesis were summarized in this review. We delve deeper to examine the possible mechanisms that underlie the involvement of reactive species from NTAPP, surface interactions, and gene expression regulation. We also have discussed the applications of NTAPP in seed priming, pre-planting treatments, and disease control for food preservation. For sustainable agriculture, NTAPP stands out as an eco-friendly technology with the potential to revolutionize crop production of the modern age. Many researchers proved that NTAPP reduces the need for agrochemicals and presents a viable path toward sustainable agriculture. This review will provide recent progress by outlining major challenges and shaping future directions for harnessing the potential of NTAPP in agriculture.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":\"44 6\",\"pages\":\"2263 - 2302\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-024-10510-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10510-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Recent Advances in Non-Thermal Plasma for Seed Germination, Plant Growth, and Secondary Metabolite Synthesis: A Promising Frontier for Sustainable Agriculture
Sustainable agriculture requires the exploration and development of eco-friendly technologies to increase crop production. From the last few decades, nonthermal atmospheric pressure plasma (NTAPP) based technology appears as an encouraging frontier in this quest. NTAPP with low temperature and energetic gas-phase chemistry offers potential applications to promote seed germination rate and plant growth. It initiates a cascade of biological responses at molecular levels inside the seed as well as in plants, greater nutrient uptake, elevated antioxidant activity, and pathogen control to ensure improved germination, seedling growth, plant growth, and increased harvesting. NTAPP technology has become more popular and convenient in agriculture due to its potential to produce plasma-activated water (PAW), which harnesses useful reactive species with PAW irrigation to promote plant growth. Recent advancements in NTAPP technology and its applications to promote seed germination, seedling growth, plant growth, and metabolite synthesis were summarized in this review. We delve deeper to examine the possible mechanisms that underlie the involvement of reactive species from NTAPP, surface interactions, and gene expression regulation. We also have discussed the applications of NTAPP in seed priming, pre-planting treatments, and disease control for food preservation. For sustainable agriculture, NTAPP stands out as an eco-friendly technology with the potential to revolutionize crop production of the modern age. Many researchers proved that NTAPP reduces the need for agrochemicals and presents a viable path toward sustainable agriculture. This review will provide recent progress by outlining major challenges and shaping future directions for harnessing the potential of NTAPP in agriculture.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.