使用带有多级残差解码器的 3D-UNet 进行高分辨率活体 4D-OCT 鱼眼成像。

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Biomedical optics express Pub Date : 2024-08-28 DOI:10.1364/boe.532258
Ruizhi Zuo,Shuwen Wei,Yaning Wang,Kristina Irsch,Jin U Kang
{"title":"使用带有多级残差解码器的 3D-UNet 进行高分辨率活体 4D-OCT 鱼眼成像。","authors":"Ruizhi Zuo,Shuwen Wei,Yaning Wang,Kristina Irsch,Jin U Kang","doi":"10.1364/boe.532258","DOIUrl":null,"url":null,"abstract":"Optical coherence tomography (OCT) allows high-resolution volumetric imaging of biological tissues in vivo. However, 3D-image acquisition often suffers from motion artifacts due to slow frame rates and involuntary and physiological movements of living tissue. To solve these issues, we implement a real-time 4D-OCT system capable of reconstructing near-distortion-free volumetric images based on a deep learning-based reconstruction algorithm. The system initially collects undersampled volumetric images at a high speed and then upsamples the images in real-time by a convolutional neural network (CNN) that generates high-frequency features using a deep learning algorithm. We compare and analyze both dual-2D- and 3D-UNet-based networks for the OCT 3D high-resolution image reconstruction. We refine the network architecture by incorporating multi-level information to accelerate convergence and improve accuracy. The network is optimized by utilizing the 16-bit floating-point precision for network parameters to conserve GPU memory and enhance efficiency. The result shows that the refined and optimized 3D-network is capable of retrieving the tissue structure more precisely and enable real-time 4D-OCT imaging at a rate greater than 10 Hz with a root mean square error (RMSE) of ∼0.03.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"10 1","pages":"5533-5546"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-resolution in vivo 4D-OCT fish-eye imaging using 3D-UNet with multi-level residue decoder.\",\"authors\":\"Ruizhi Zuo,Shuwen Wei,Yaning Wang,Kristina Irsch,Jin U Kang\",\"doi\":\"10.1364/boe.532258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical coherence tomography (OCT) allows high-resolution volumetric imaging of biological tissues in vivo. However, 3D-image acquisition often suffers from motion artifacts due to slow frame rates and involuntary and physiological movements of living tissue. To solve these issues, we implement a real-time 4D-OCT system capable of reconstructing near-distortion-free volumetric images based on a deep learning-based reconstruction algorithm. The system initially collects undersampled volumetric images at a high speed and then upsamples the images in real-time by a convolutional neural network (CNN) that generates high-frequency features using a deep learning algorithm. We compare and analyze both dual-2D- and 3D-UNet-based networks for the OCT 3D high-resolution image reconstruction. We refine the network architecture by incorporating multi-level information to accelerate convergence and improve accuracy. The network is optimized by utilizing the 16-bit floating-point precision for network parameters to conserve GPU memory and enhance efficiency. The result shows that the refined and optimized 3D-network is capable of retrieving the tissue structure more precisely and enable real-time 4D-OCT imaging at a rate greater than 10 Hz with a root mean square error (RMSE) of ∼0.03.\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"10 1\",\"pages\":\"5533-5546\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/boe.532258\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/boe.532258","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

光学相干断层扫描(OCT)可对活体生物组织进行高分辨率容积成像。然而,由于帧频较慢以及活体组织的非自主和生理运动,三维图像采集经常会出现运动伪影。为了解决这些问题,我们实施了一种实时 4D-OCT 系统,该系统能够基于基于深度学习的重建算法重建近乎无失真容积图像。该系统最初以高速收集未采样的容积图像,然后通过卷积神经网络(CNN)对图像进行实时上采样,并利用深度学习算法生成高频特征。我们比较并分析了基于双 2D 网络和 3DUNet 网络的 OCT 3D 高分辨率图像重建。我们通过整合多层次信息来完善网络架构,从而加快收敛速度并提高准确性。网络参数采用 16 位浮点精度,以节省 GPU 内存并提高效率。结果表明,经过改进和优化的三维网络能够更精确地检索组织结构,并能以大于 10 Hz 的速率进行实时 4D-OCT 成像,均方根误差(RMSE)为 ∼0.03。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-resolution in vivo 4D-OCT fish-eye imaging using 3D-UNet with multi-level residue decoder.
Optical coherence tomography (OCT) allows high-resolution volumetric imaging of biological tissues in vivo. However, 3D-image acquisition often suffers from motion artifacts due to slow frame rates and involuntary and physiological movements of living tissue. To solve these issues, we implement a real-time 4D-OCT system capable of reconstructing near-distortion-free volumetric images based on a deep learning-based reconstruction algorithm. The system initially collects undersampled volumetric images at a high speed and then upsamples the images in real-time by a convolutional neural network (CNN) that generates high-frequency features using a deep learning algorithm. We compare and analyze both dual-2D- and 3D-UNet-based networks for the OCT 3D high-resolution image reconstruction. We refine the network architecture by incorporating multi-level information to accelerate convergence and improve accuracy. The network is optimized by utilizing the 16-bit floating-point precision for network parameters to conserve GPU memory and enhance efficiency. The result shows that the refined and optimized 3D-network is capable of retrieving the tissue structure more precisely and enable real-time 4D-OCT imaging at a rate greater than 10 Hz with a root mean square error (RMSE) of ∼0.03.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
期刊最新文献
Super resolution reconstruction of fluorescence microscopy images by a convolutional network with physical priors. Physics-guided deep learning-based real-time image reconstruction of Fourier-domain optical coherence tomography. On bench evaluation of intraocular lenses: performance of a commercial interferometer. Predictive coding compressive sensing optical coherence tomography hardware implementation. Development of silicone-based phantoms for biomedical optics from 400 to 1550 nm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1