Jingjing Zhao,Jianfang Zhu,Weiqiang Wang,Zhengfang Qian,Shuting Fan
{"title":"CRISPR/Cas12a 裂解触发纳米花,用于太赫兹频率下无荧光和无靶标放大的 ctDNA 生物传感。","authors":"Jingjing Zhao,Jianfang Zhu,Weiqiang Wang,Zhengfang Qian,Shuting Fan","doi":"10.1364/boe.534511","DOIUrl":null,"url":null,"abstract":"The detection of tumor biomarkers in liquid biopsies requires high sensitivity and low-cost biosensing strategies. However, few traditional techniques can satisfy the requirements of target amplification-free and fluorescence-free at the same time. In this study, we have proposed a novel strategy for ctDNA detection with the combination of terahertz spectroscopy and the CRISPR/Cas12 system. The CRISPR/Cas12a system is activated by the target ctDNA, resulting in a series of reactions leading to the formation of an Au-Fe complex. This complex is easily extracted with magnets and when dropped onto the terahertz metamaterial sensor, it can enhance the frequency shift, providing sensitive and selective sensing of the target ctDNA. Results show that the proposed terahertz biosensor exhibits a relatively low detection limit of 0.8 fM and a good selectivity over interference species. This detection limit is improved by three orders of magnitude compared with traditional biosensing methods using terahertz waves. Furthermore, a ctDNA concentration of 100 fM has been successfully detected in bovine serum (corresponding to 50 fM in the final reaction system) without amplification.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"10 1","pages":"5400-5410"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas12a cleavage triggered nanoflower for fluorescence-free and target amplification-free biosensing of ctDNA in the terahertz frequencies.\",\"authors\":\"Jingjing Zhao,Jianfang Zhu,Weiqiang Wang,Zhengfang Qian,Shuting Fan\",\"doi\":\"10.1364/boe.534511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of tumor biomarkers in liquid biopsies requires high sensitivity and low-cost biosensing strategies. However, few traditional techniques can satisfy the requirements of target amplification-free and fluorescence-free at the same time. In this study, we have proposed a novel strategy for ctDNA detection with the combination of terahertz spectroscopy and the CRISPR/Cas12 system. The CRISPR/Cas12a system is activated by the target ctDNA, resulting in a series of reactions leading to the formation of an Au-Fe complex. This complex is easily extracted with magnets and when dropped onto the terahertz metamaterial sensor, it can enhance the frequency shift, providing sensitive and selective sensing of the target ctDNA. Results show that the proposed terahertz biosensor exhibits a relatively low detection limit of 0.8 fM and a good selectivity over interference species. This detection limit is improved by three orders of magnitude compared with traditional biosensing methods using terahertz waves. Furthermore, a ctDNA concentration of 100 fM has been successfully detected in bovine serum (corresponding to 50 fM in the final reaction system) without amplification.\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"10 1\",\"pages\":\"5400-5410\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/boe.534511\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/boe.534511","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
CRISPR/Cas12a cleavage triggered nanoflower for fluorescence-free and target amplification-free biosensing of ctDNA in the terahertz frequencies.
The detection of tumor biomarkers in liquid biopsies requires high sensitivity and low-cost biosensing strategies. However, few traditional techniques can satisfy the requirements of target amplification-free and fluorescence-free at the same time. In this study, we have proposed a novel strategy for ctDNA detection with the combination of terahertz spectroscopy and the CRISPR/Cas12 system. The CRISPR/Cas12a system is activated by the target ctDNA, resulting in a series of reactions leading to the formation of an Au-Fe complex. This complex is easily extracted with magnets and when dropped onto the terahertz metamaterial sensor, it can enhance the frequency shift, providing sensitive and selective sensing of the target ctDNA. Results show that the proposed terahertz biosensor exhibits a relatively low detection limit of 0.8 fM and a good selectivity over interference species. This detection limit is improved by three orders of magnitude compared with traditional biosensing methods using terahertz waves. Furthermore, a ctDNA concentration of 100 fM has been successfully detected in bovine serum (corresponding to 50 fM in the final reaction system) without amplification.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.