沉积参数对射频磁控溅射沉积硅氢薄膜的光学和结构特性的影响

IF 2.8 3区 材料科学 Q3 CHEMISTRY, PHYSICAL Silicon Pub Date : 2024-09-16 DOI:10.1007/s12633-024-03142-1
Sutapa Badyakar, G. Mohan Rao, Sanjana MN, Sneha C, Monisha D, Likitha Yallegowda, Chandasree Das
{"title":"沉积参数对射频磁控溅射沉积硅氢薄膜的光学和结构特性的影响","authors":"Sutapa Badyakar, G. Mohan Rao, Sanjana MN, Sneha C, Monisha D, Likitha Yallegowda, Chandasree Das","doi":"10.1007/s12633-024-03142-1","DOIUrl":null,"url":null,"abstract":"<p>This study reports the deposition of amorphous hydrogenated silicon thin films by radio frequency magnetron sputtering and their optical characterization by UV–visible spectroscopy and FTIR Spectroscopy. Structural characterization and morphological studies are also performed. It investigates the effect of process factors such as RF power, hydrogen concentration, and deposition temperature on the optical properties of the deposited films. The impact of process parameters like RF power, hydrogen flow, and substrate temperature on the bandgap, refractive index and hydrogen concentration has been studied. The study draws a comparison due to the crucial interactions among RF power, hydrogen flow, and substrate temperature which affect the optical and structural characteristics of a-Si:H thin films. For a particular application, the critical control of these parameters is necessary to provide the requisite film qualities. The films prepared with optimized deposition parameters of RF power of 80 W, hydrogen flow of 5 sccm, and deposition temperature of 150 °C, resulted in a bandgap value of 1.80 eV, refractive index of 2.3, and hydrogen concentration of 5.15% which can be useful as absorber layer in photovoltaic applications. Despite the amorphous nature of all the films, achieving a high-quality a-Si:H thin film requires control over the growth structures, where hydrogen plays a crucial role in passivating the defects.</p>","PeriodicalId":776,"journal":{"name":"Silicon","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of deposition parameters on the optical and structural properties of silicon-hydrogen films deposited by RF magnetron sputtering\",\"authors\":\"Sutapa Badyakar, G. Mohan Rao, Sanjana MN, Sneha C, Monisha D, Likitha Yallegowda, Chandasree Das\",\"doi\":\"10.1007/s12633-024-03142-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study reports the deposition of amorphous hydrogenated silicon thin films by radio frequency magnetron sputtering and their optical characterization by UV–visible spectroscopy and FTIR Spectroscopy. Structural characterization and morphological studies are also performed. It investigates the effect of process factors such as RF power, hydrogen concentration, and deposition temperature on the optical properties of the deposited films. The impact of process parameters like RF power, hydrogen flow, and substrate temperature on the bandgap, refractive index and hydrogen concentration has been studied. The study draws a comparison due to the crucial interactions among RF power, hydrogen flow, and substrate temperature which affect the optical and structural characteristics of a-Si:H thin films. For a particular application, the critical control of these parameters is necessary to provide the requisite film qualities. The films prepared with optimized deposition parameters of RF power of 80 W, hydrogen flow of 5 sccm, and deposition temperature of 150 °C, resulted in a bandgap value of 1.80 eV, refractive index of 2.3, and hydrogen concentration of 5.15% which can be useful as absorber layer in photovoltaic applications. Despite the amorphous nature of all the films, achieving a high-quality a-Si:H thin film requires control over the growth structures, where hydrogen plays a crucial role in passivating the defects.</p>\",\"PeriodicalId\":776,\"journal\":{\"name\":\"Silicon\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silicon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12633-024-03142-1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12633-024-03142-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究报告了通过射频磁控溅射沉积非晶氢化硅薄膜的过程,以及通过紫外可见光谱和傅立叶变换红外光谱对其进行的光学表征。此外,还进行了结构表征和形态研究。它研究了射频功率、氢浓度和沉积温度等工艺因素对沉积薄膜光学特性的影响。研究了射频功率、氢气流量和基底温度等工艺参数对带隙、折射率和氢气浓度的影响。由于射频功率、氢气流量和基底温度之间的重要相互作用会影响 a-Si:H 薄膜的光学和结构特性,因此该研究进行了比较。在特定应用中,必须对这些参数进行关键控制,以提供所需的薄膜质量。在射频功率为 80 W、氢气流量为 5 sccm、沉积温度为 150 °C 的优化沉积参数下制备的薄膜,其带隙值为 1.80 eV,折射率为 2.3,氢气浓度为 5.15%,可用作光伏应用中的吸收层。尽管所有薄膜都是无定形的,但要获得高质量的 a-Si:H 薄膜需要控制生长结构,而氢在钝化缺陷方面起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of deposition parameters on the optical and structural properties of silicon-hydrogen films deposited by RF magnetron sputtering

This study reports the deposition of amorphous hydrogenated silicon thin films by radio frequency magnetron sputtering and their optical characterization by UV–visible spectroscopy and FTIR Spectroscopy. Structural characterization and morphological studies are also performed. It investigates the effect of process factors such as RF power, hydrogen concentration, and deposition temperature on the optical properties of the deposited films. The impact of process parameters like RF power, hydrogen flow, and substrate temperature on the bandgap, refractive index and hydrogen concentration has been studied. The study draws a comparison due to the crucial interactions among RF power, hydrogen flow, and substrate temperature which affect the optical and structural characteristics of a-Si:H thin films. For a particular application, the critical control of these parameters is necessary to provide the requisite film qualities. The films prepared with optimized deposition parameters of RF power of 80 W, hydrogen flow of 5 sccm, and deposition temperature of 150 °C, resulted in a bandgap value of 1.80 eV, refractive index of 2.3, and hydrogen concentration of 5.15% which can be useful as absorber layer in photovoltaic applications. Despite the amorphous nature of all the films, achieving a high-quality a-Si:H thin film requires control over the growth structures, where hydrogen plays a crucial role in passivating the defects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Silicon
Silicon CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.90
自引率
20.60%
发文量
685
审稿时长
>12 weeks
期刊介绍: The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.
期刊最新文献
Linear and Nonlinear Optical Characteristics of Bismuth-Modified Lead-Silicate Glasses Structure and Density Heterogeneities of Silica Glass: Insight from Datamining Techniques Synthesis of a Novel Modified Polysiloxane Filtrate Reducer and its Application in Water-Based Drilling Fluids Role of Silicon in Providing Defence Against Insect Herbivory in Sugarcane Production Assessment of Trap Charges for Analog/RF FOMs and Linearity Behaviour on InAs Based Dual Metal Hetero Gate Oxide TFET for Enhanced Reliability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1