在掺入钴酸锶的催化剂上高效光催化生产 H2O2 和绿色氧化甘油

Yuxuan He, Yongming Wang, Jin Qian, Kailin Xu, Bianhe Lu, Sijing Tang, Yin Liu, Junwei Shen
{"title":"在掺入钴酸锶的催化剂上高效光催化生产 H2O2 和绿色氧化甘油","authors":"Yuxuan He, Yongming Wang, Jin Qian, Kailin Xu, Bianhe Lu, Sijing Tang, Yin Liu, Junwei Shen","doi":"10.1016/j.apcatb.2024.124565","DOIUrl":null,"url":null,"abstract":"Photocatalysis for HO production suffers from low carrier utilization and slow reaction kinetics. Herein, a photocatalytic system supported by a SrCoO-MoS (SCOS) heterojunction, which possessed a unique S-O electron transport channel, was proposed to facilitate HO production under condition where glycerol served as a sacrificial agent. The SCOS heterojunction achieved a remarkable yield of 15.90 mmol g h HO production, 3.7 times higher than the base component SCO. The construction of the heterojunction enriched the oxygen vacancies on the catalyst surface, facilitated photogenerated charge separation, and promoted the adsorption of O, reducing the oxygen reduction reaction (ORR) energy barrier. Besides, glycerol served as a unique proton donor, efficiently captured holes to enhance HO production, and generated valuable by-products including glyceric acid and dihydroxyacetone. Furthermore, SCOS exhibited excellent stability over repeated cycles with consistent HO yields. This study offers an efficient photocatalytic system and demonstrates glycerol’s potential in green oxidation processes.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient photocatalytic H2O2 production and green oxidation of glycerol over a SrCoO3-incorporated catalyst\",\"authors\":\"Yuxuan He, Yongming Wang, Jin Qian, Kailin Xu, Bianhe Lu, Sijing Tang, Yin Liu, Junwei Shen\",\"doi\":\"10.1016/j.apcatb.2024.124565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photocatalysis for HO production suffers from low carrier utilization and slow reaction kinetics. Herein, a photocatalytic system supported by a SrCoO-MoS (SCOS) heterojunction, which possessed a unique S-O electron transport channel, was proposed to facilitate HO production under condition where glycerol served as a sacrificial agent. The SCOS heterojunction achieved a remarkable yield of 15.90 mmol g h HO production, 3.7 times higher than the base component SCO. The construction of the heterojunction enriched the oxygen vacancies on the catalyst surface, facilitated photogenerated charge separation, and promoted the adsorption of O, reducing the oxygen reduction reaction (ORR) energy barrier. Besides, glycerol served as a unique proton donor, efficiently captured holes to enhance HO production, and generated valuable by-products including glyceric acid and dihydroxyacetone. Furthermore, SCOS exhibited excellent stability over repeated cycles with consistent HO yields. This study offers an efficient photocatalytic system and demonstrates glycerol’s potential in green oxidation processes.\",\"PeriodicalId\":516528,\"journal\":{\"name\":\"Applied Catalysis B: Environment and Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environment and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apcatb.2024.124565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光催化生产 HO 存在载流子利用率低和反应动力学缓慢的问题。本文提出了一种由 SrCoO-MoS (SCOS)异质结支持的光催化系统,该异质结具有独特的 S-O 电子传输通道,可在甘油作为牺牲剂的条件下促进 HO 的产生。SCOS 异质结的 HO 产率高达 15.90 mmol g h,是基本成分 SCO 产率的 3.7 倍。异质结的构建丰富了催化剂表面的氧空位,促进了光生电荷分离,促进了 O 的吸附,降低了氧还原反应(ORR)的能垒。此外,甘油还是一种独特的质子供体,能有效捕获空穴以提高 HO 的生成,并产生包括甘油酸和二羟基丙酮在内的有价值的副产物。此外,SCOS 在反复循环中表现出卓越的稳定性,并能持续产生 HO。这项研究提供了一种高效的光催化系统,并证明了甘油在绿色氧化过程中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient photocatalytic H2O2 production and green oxidation of glycerol over a SrCoO3-incorporated catalyst
Photocatalysis for HO production suffers from low carrier utilization and slow reaction kinetics. Herein, a photocatalytic system supported by a SrCoO-MoS (SCOS) heterojunction, which possessed a unique S-O electron transport channel, was proposed to facilitate HO production under condition where glycerol served as a sacrificial agent. The SCOS heterojunction achieved a remarkable yield of 15.90 mmol g h HO production, 3.7 times higher than the base component SCO. The construction of the heterojunction enriched the oxygen vacancies on the catalyst surface, facilitated photogenerated charge separation, and promoted the adsorption of O, reducing the oxygen reduction reaction (ORR) energy barrier. Besides, glycerol served as a unique proton donor, efficiently captured holes to enhance HO production, and generated valuable by-products including glyceric acid and dihydroxyacetone. Furthermore, SCOS exhibited excellent stability over repeated cycles with consistent HO yields. This study offers an efficient photocatalytic system and demonstrates glycerol’s potential in green oxidation processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unusually improved peracetic acid activation for ultrafast organic compound removal through redox-inert Mg incorporation into active Co3O4 Photoelectrocatalytic allylic C–H oxidation to allylic alcohols coupled with hydrogen evolution Unveiling O2 adsorption on non-metallic active site for selective photocatalytic H2O2 production At least five: Benefit origins of potassium and sodium co-doping on carbon nitride for integrating pharmaceuticals degradation and hydrogen peroxide production Efficient and selective electroreduction of nitrate to ammonia via interfacial engineering of B-doped Cu nanoneedles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1