{"title":"扫描速度对激光直接沉积 70Cr8Ni2Y 涂层微观结构演变和性能的影响","authors":"Xueting Chen, Chang Zhao, Xiaoou Zhu, Guili Yin and Yun Xu","doi":"10.1088/2053-1591/ad78af","DOIUrl":null,"url":null,"abstract":"The 70Cr8Ni2Y coatings were prepared by direct laser deposition (DLD) with different scanning speeds. The microstructure evolution and the relationship between microstructure and properties of the coatings were studied. The results demonstrated that the microstructure of DLD 70Cr8Ni2Y coatings was martensite, and the phases were α′ (Fe-Cr) and γ-Fe (Fe-Ni). With the increased of scanning speed, the martensite size decreased from 5.42 ± 0.04 μm to 4.42 ± 0.01 μm and 3.20 ± 0.02 μm. When the scanning speed was 20 mm s−1, the fabricated coating displayed the highest average microhardness (883 ± 37 HV) and the lowest mass wear rate (0.061 mg mm−1) without pores. The combined strengthening effect of fine grain strengthening and solid solution strengthening, as well as good formability, were the fundamental reasons for the high hardness and wear resistance of the coating. The results of this study can provide an experimental basis for the DLD alloy coatings with high hardness and wear resistance.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of scanning speeds on microstructure evolution and properties of 70Cr8Ni2Y coatings by direct laser deposition\",\"authors\":\"Xueting Chen, Chang Zhao, Xiaoou Zhu, Guili Yin and Yun Xu\",\"doi\":\"10.1088/2053-1591/ad78af\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 70Cr8Ni2Y coatings were prepared by direct laser deposition (DLD) with different scanning speeds. The microstructure evolution and the relationship between microstructure and properties of the coatings were studied. The results demonstrated that the microstructure of DLD 70Cr8Ni2Y coatings was martensite, and the phases were α′ (Fe-Cr) and γ-Fe (Fe-Ni). With the increased of scanning speed, the martensite size decreased from 5.42 ± 0.04 μm to 4.42 ± 0.01 μm and 3.20 ± 0.02 μm. When the scanning speed was 20 mm s−1, the fabricated coating displayed the highest average microhardness (883 ± 37 HV) and the lowest mass wear rate (0.061 mg mm−1) without pores. The combined strengthening effect of fine grain strengthening and solid solution strengthening, as well as good formability, were the fundamental reasons for the high hardness and wear resistance of the coating. The results of this study can provide an experimental basis for the DLD alloy coatings with high hardness and wear resistance.\",\"PeriodicalId\":18530,\"journal\":{\"name\":\"Materials Research Express\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1591/ad78af\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad78af","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of scanning speeds on microstructure evolution and properties of 70Cr8Ni2Y coatings by direct laser deposition
The 70Cr8Ni2Y coatings were prepared by direct laser deposition (DLD) with different scanning speeds. The microstructure evolution and the relationship between microstructure and properties of the coatings were studied. The results demonstrated that the microstructure of DLD 70Cr8Ni2Y coatings was martensite, and the phases were α′ (Fe-Cr) and γ-Fe (Fe-Ni). With the increased of scanning speed, the martensite size decreased from 5.42 ± 0.04 μm to 4.42 ± 0.01 μm and 3.20 ± 0.02 μm. When the scanning speed was 20 mm s−1, the fabricated coating displayed the highest average microhardness (883 ± 37 HV) and the lowest mass wear rate (0.061 mg mm−1) without pores. The combined strengthening effect of fine grain strengthening and solid solution strengthening, as well as good formability, were the fundamental reasons for the high hardness and wear resistance of the coating. The results of this study can provide an experimental basis for the DLD alloy coatings with high hardness and wear resistance.
期刊介绍:
A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.