{"title":"核团星形胶质细胞双向调节社交行为","authors":"Jonathan W VanRyzin, Kathryn J Reissner","doi":"10.1101/2024.09.18.613653","DOIUrl":null,"url":null,"abstract":"Social behaviors are critical for survival and fitness of a species, and maladaptive social behaviors are frequently associated with neurodevelopmental and psychiatric disorders. As such, the neural circuits and cellular mechanisms driving social behaviors inform critical processes contributing to both health and disease. In particular, the nucleus accumbens (NAc) is a key hub for the integration of both social and non-social information required for successful social interactions and reward motivated behaviors. While astrocytes within the NAc have a recognized role in modulating neural activity, their influence over social behavior is yet undefined. To address this question, we manipulated NAc astrocyte signaling and determined effects on social interactions. NAc core astrocytes bidirectionally influenced social behavior in rats; agonism of astrocyte-specific hM3D(Gq) DREADD receptors increased social interaction time in the social interaction test and increased social preference in the 3-chamber test. Conversely, decreasing intracellular calcium signaling in astrocytes with viral expression of hPMCA reduced both social interaction and social preference in these tests. These results suggest that NAc astrocytes actively participate in the regulation of social behavior and highlight a putative role for astrocytes in disorders characterized by social dysfunction.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nucleus accumbens astrocytes bidirectionally modulate social behavior\",\"authors\":\"Jonathan W VanRyzin, Kathryn J Reissner\",\"doi\":\"10.1101/2024.09.18.613653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social behaviors are critical for survival and fitness of a species, and maladaptive social behaviors are frequently associated with neurodevelopmental and psychiatric disorders. As such, the neural circuits and cellular mechanisms driving social behaviors inform critical processes contributing to both health and disease. In particular, the nucleus accumbens (NAc) is a key hub for the integration of both social and non-social information required for successful social interactions and reward motivated behaviors. While astrocytes within the NAc have a recognized role in modulating neural activity, their influence over social behavior is yet undefined. To address this question, we manipulated NAc astrocyte signaling and determined effects on social interactions. NAc core astrocytes bidirectionally influenced social behavior in rats; agonism of astrocyte-specific hM3D(Gq) DREADD receptors increased social interaction time in the social interaction test and increased social preference in the 3-chamber test. Conversely, decreasing intracellular calcium signaling in astrocytes with viral expression of hPMCA reduced both social interaction and social preference in these tests. These results suggest that NAc astrocytes actively participate in the regulation of social behavior and highlight a putative role for astrocytes in disorders characterized by social dysfunction.\",\"PeriodicalId\":501581,\"journal\":{\"name\":\"bioRxiv - Neuroscience\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.18.613653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.18.613653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nucleus accumbens astrocytes bidirectionally modulate social behavior
Social behaviors are critical for survival and fitness of a species, and maladaptive social behaviors are frequently associated with neurodevelopmental and psychiatric disorders. As such, the neural circuits and cellular mechanisms driving social behaviors inform critical processes contributing to both health and disease. In particular, the nucleus accumbens (NAc) is a key hub for the integration of both social and non-social information required for successful social interactions and reward motivated behaviors. While astrocytes within the NAc have a recognized role in modulating neural activity, their influence over social behavior is yet undefined. To address this question, we manipulated NAc astrocyte signaling and determined effects on social interactions. NAc core astrocytes bidirectionally influenced social behavior in rats; agonism of astrocyte-specific hM3D(Gq) DREADD receptors increased social interaction time in the social interaction test and increased social preference in the 3-chamber test. Conversely, decreasing intracellular calcium signaling in astrocytes with viral expression of hPMCA reduced both social interaction and social preference in these tests. These results suggest that NAc astrocytes actively participate in the regulation of social behavior and highlight a putative role for astrocytes in disorders characterized by social dysfunction.