脊髓 V1 中间神经元的转录组图谱揭示了 En1 在特定运动输出要素中的作用

Alexandra J. Trevisan, Katie Han, Phillip Chapman, Anand S. Kulkarni, Jennifer M. Hinton, Cody Ramirez, Ines Klein, Graziana Gatto, Mariano I. Gabitto, Vilas Menon, Jay B. Bikoff
{"title":"脊髓 V1 中间神经元的转录组图谱揭示了 En1 在特定运动输出要素中的作用","authors":"Alexandra J. Trevisan, Katie Han, Phillip Chapman, Anand S. Kulkarni, Jennifer M. Hinton, Cody Ramirez, Ines Klein, Graziana Gatto, Mariano I. Gabitto, Vilas Menon, Jay B. Bikoff","doi":"10.1101/2024.09.18.613279","DOIUrl":null,"url":null,"abstract":"Neural circuits in the spinal cord are composed of diverse sets of interneurons that play crucial roles in shaping motor output. Despite progress in revealing the cellular architecture of the spinal cord, the extent of cell type heterogeneity within interneuron populations remains unclear. Here, we present a single-nucleus transcriptomic atlas of spinal V1 interneurons across postnatal development. We find that the core molecular taxonomy distinguishing neonatal V1 interneurons perdures into adulthood, suggesting conservation of function across development. Moreover, we identify a key role for En1, a transcription factor that marks the V1 population, in specifying one unique subset of V1-Pou6f2 interneurons. Loss of En1 selectively disrupts the frequency of rhythmic locomotor output but does not disrupt flexion/extension limb movement. Beyond serving as a molecular resource for this neuronal population, our study highlights how deep neuronal profiling provides an entry point for functional studies of specialized cell types in motor output.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The transcriptomic landscape of spinal V1 interneurons reveals a role for En1 in specific elements of motor output\",\"authors\":\"Alexandra J. Trevisan, Katie Han, Phillip Chapman, Anand S. Kulkarni, Jennifer M. Hinton, Cody Ramirez, Ines Klein, Graziana Gatto, Mariano I. Gabitto, Vilas Menon, Jay B. Bikoff\",\"doi\":\"10.1101/2024.09.18.613279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural circuits in the spinal cord are composed of diverse sets of interneurons that play crucial roles in shaping motor output. Despite progress in revealing the cellular architecture of the spinal cord, the extent of cell type heterogeneity within interneuron populations remains unclear. Here, we present a single-nucleus transcriptomic atlas of spinal V1 interneurons across postnatal development. We find that the core molecular taxonomy distinguishing neonatal V1 interneurons perdures into adulthood, suggesting conservation of function across development. Moreover, we identify a key role for En1, a transcription factor that marks the V1 population, in specifying one unique subset of V1-Pou6f2 interneurons. Loss of En1 selectively disrupts the frequency of rhythmic locomotor output but does not disrupt flexion/extension limb movement. Beyond serving as a molecular resource for this neuronal population, our study highlights how deep neuronal profiling provides an entry point for functional studies of specialized cell types in motor output.\",\"PeriodicalId\":501581,\"journal\":{\"name\":\"bioRxiv - Neuroscience\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.18.613279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.18.613279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脊髓中的神经回路由多种多样的中间神经元组成,它们在形成运动输出方面发挥着至关重要的作用。尽管在揭示脊髓细胞结构方面取得了进展,但中间神经元群内细胞类型异质性的程度仍不清楚。在这里,我们展示了脊髓 V1 中间神经元在整个出生后发育过程中的单核转录组图谱。我们发现,区分新生儿 V1 神经元的核心分子分类法一直持续到成年期,这表明整个发育过程中的功能保持不变。此外,我们还发现 En1(一种标记 V1 群体的转录因子)在指定 V1-Pou6f2 中间神经元的一个独特亚群方面起着关键作用。En1的缺失会选择性地破坏有节律的运动输出频率,但不会破坏屈伸肢体运动。除了作为该神经元群的分子资源外,我们的研究还强调了深度神经元谱分析如何为运动输出中特化细胞类型的功能研究提供切入点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The transcriptomic landscape of spinal V1 interneurons reveals a role for En1 in specific elements of motor output
Neural circuits in the spinal cord are composed of diverse sets of interneurons that play crucial roles in shaping motor output. Despite progress in revealing the cellular architecture of the spinal cord, the extent of cell type heterogeneity within interneuron populations remains unclear. Here, we present a single-nucleus transcriptomic atlas of spinal V1 interneurons across postnatal development. We find that the core molecular taxonomy distinguishing neonatal V1 interneurons perdures into adulthood, suggesting conservation of function across development. Moreover, we identify a key role for En1, a transcription factor that marks the V1 population, in specifying one unique subset of V1-Pou6f2 interneurons. Loss of En1 selectively disrupts the frequency of rhythmic locomotor output but does not disrupt flexion/extension limb movement. Beyond serving as a molecular resource for this neuronal population, our study highlights how deep neuronal profiling provides an entry point for functional studies of specialized cell types in motor output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FUS controls muscle differentiation and structure through LLPS mediated recruitment of MEF2 and ETV5 Neural basis of collective social behavior during environmental challenge Contrasting Cognitive, Behavioral, and Physiological Responses to Breathwork vs. Naturalistic Stimuli in Reflective Chamber and VR Headset Environments Alpha-synuclein preformed fibril-induced aggregation and dopaminergic cell death in cathepsin D overexpression and ZKSCAN3 knockout mice Histamine interferes with the early visual processing in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1