利用 SynthSeg 框架和规范建模纵向描述多发性硬化症萎缩的特征

Pedro Macias Gordaliza, Nataliia Molchanova, Maxence Wynen, Pietro Maggi, Joost Janssen, Jaume Banus, Alessandro Cagol, Cristina Granziera, Meritxell Bach Cuadra
{"title":"利用 SynthSeg 框架和规范建模纵向描述多发性硬化症萎缩的特征","authors":"Pedro Macias Gordaliza, Nataliia Molchanova, Maxence Wynen, Pietro Maggi, Joost Janssen, Jaume Banus, Alessandro Cagol, Cristina Granziera, Meritxell Bach Cuadra","doi":"10.1101/2024.09.17.613272","DOIUrl":null,"url":null,"abstract":"Multiple Sclerosis (MS) is a complex neurodegenerative disease characterized by heterogeneous progression patterns. Traditional clinical measures like the Expanded Disability Status Scale (EDSS) inadequately capture the full spectrum of disease progression, highlighting the need for advanced Disease Progression Modeling (DPM) approaches.This study harnesses cutting-edge neuroimaging and deep learning techniques to investigate deviations in subcortical volumes in MS patients. We analyze T1-weighted and Fluid-attenuated inversion recovery (FLAIR) Magnetic Resonance Imaging (MRI) data using advanced DL segmentation models, SynthSeg+ and SynthSeg-WMH, which address the challenges of conventional methods in the presence of white matter lesions. By comparing subcortical volumes of 326 MS patients to a normative model from 37,407 healthy individuals, we identify significant deviations that enhance our understanding of MS progression. This study highlights the potential of integrating DL with normative modeling to refine MS progression characterization, automate informative MRI contrasts, and contribute to data-driven DPM in neurodegenerative diseases.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Longitudinal Characterization of Multiple Sclerosis Atrophy Employing SynthSeg Framework and Normative Modeling\",\"authors\":\"Pedro Macias Gordaliza, Nataliia Molchanova, Maxence Wynen, Pietro Maggi, Joost Janssen, Jaume Banus, Alessandro Cagol, Cristina Granziera, Meritxell Bach Cuadra\",\"doi\":\"10.1101/2024.09.17.613272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple Sclerosis (MS) is a complex neurodegenerative disease characterized by heterogeneous progression patterns. Traditional clinical measures like the Expanded Disability Status Scale (EDSS) inadequately capture the full spectrum of disease progression, highlighting the need for advanced Disease Progression Modeling (DPM) approaches.This study harnesses cutting-edge neuroimaging and deep learning techniques to investigate deviations in subcortical volumes in MS patients. We analyze T1-weighted and Fluid-attenuated inversion recovery (FLAIR) Magnetic Resonance Imaging (MRI) data using advanced DL segmentation models, SynthSeg+ and SynthSeg-WMH, which address the challenges of conventional methods in the presence of white matter lesions. By comparing subcortical volumes of 326 MS patients to a normative model from 37,407 healthy individuals, we identify significant deviations that enhance our understanding of MS progression. This study highlights the potential of integrating DL with normative modeling to refine MS progression characterization, automate informative MRI contrasts, and contribute to data-driven DPM in neurodegenerative diseases.\",\"PeriodicalId\":501581,\"journal\":{\"name\":\"bioRxiv - Neuroscience\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.17.613272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.17.613272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多发性硬化症(MS)是一种复杂的神经退行性疾病,其特点是进展模式各不相同。本研究利用最先进的神经成像和深度学习技术来研究多发性硬化症患者皮层下体积的偏差。我们使用先进的 DL 分割模型 SynthSeg+ 和 SynthSeg-WMH 分析了 T1 加权和流体增强反转恢复(FLAIR)磁共振成像(MRI)数据。通过将 326 名多发性硬化症患者的皮层下容积与 37,407 名健康人的标准模型进行比较,我们发现了明显的偏差,从而加深了我们对多发性硬化症进展的理解。这项研究强调了将 DL 与常模整合以完善多发性硬化症进展特征、自动进行信息 MRI 对比以及促进神经退行性疾病的数据驱动 DPM 的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Longitudinal Characterization of Multiple Sclerosis Atrophy Employing SynthSeg Framework and Normative Modeling
Multiple Sclerosis (MS) is a complex neurodegenerative disease characterized by heterogeneous progression patterns. Traditional clinical measures like the Expanded Disability Status Scale (EDSS) inadequately capture the full spectrum of disease progression, highlighting the need for advanced Disease Progression Modeling (DPM) approaches.This study harnesses cutting-edge neuroimaging and deep learning techniques to investigate deviations in subcortical volumes in MS patients. We analyze T1-weighted and Fluid-attenuated inversion recovery (FLAIR) Magnetic Resonance Imaging (MRI) data using advanced DL segmentation models, SynthSeg+ and SynthSeg-WMH, which address the challenges of conventional methods in the presence of white matter lesions. By comparing subcortical volumes of 326 MS patients to a normative model from 37,407 healthy individuals, we identify significant deviations that enhance our understanding of MS progression. This study highlights the potential of integrating DL with normative modeling to refine MS progression characterization, automate informative MRI contrasts, and contribute to data-driven DPM in neurodegenerative diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FUS controls muscle differentiation and structure through LLPS mediated recruitment of MEF2 and ETV5 Neural basis of collective social behavior during environmental challenge Contrasting Cognitive, Behavioral, and Physiological Responses to Breathwork vs. Naturalistic Stimuli in Reflective Chamber and VR Headset Environments Alpha-synuclein preformed fibril-induced aggregation and dopaminergic cell death in cathepsin D overexpression and ZKSCAN3 knockout mice Histamine interferes with the early visual processing in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1