L G Guzman, L C Sánchez, J Gil Monsalve, C Ostos and O Arnache
{"title":"镍锌铁氧体薄膜的生长、磁性和电子特性","authors":"L G Guzman, L C Sánchez, J Gil Monsalve, C Ostos and O Arnache","doi":"10.1088/2053-1591/ad78ae","DOIUrl":null,"url":null,"abstract":"Thin films of Ni-Zn ferrite grown on MgO(111) single crystal substrate were prepared using radiofrequency magnetron sputtering, with a target of nominal composition Ni0.5Zn0.5Fe2O4. Subsequently, x-ray diffraction (XRD) was performed, which revealed characteristic reflections of a Ni-Zn ferrite structure, confirming the unique formation of the ferrite. X-ray photoelectron spectroscopy (XPS) revealed the presence of metal ions in their appropriate valence states within the crystalline structure of the Ni-Zn ferrite. The variation in binding energy observed in the thin film is attributed to changes in the environment of Fe3+ and Zn2+ or Ni2+ ions, resulting from the non-equilibrium distribution of cations in tetrahedral and octahedral sites. The saturation magnetization and the coercivity field were and 513 ± 32 Oe, respectively. In addition, ferromagnetic resonance studies were made using broad-band FMR spectroscopy based on a coplanar waveguide (CPW) spectrometer.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"37 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth, magnetic, and electronic properties of Ni-Zn ferrites thin films\",\"authors\":\"L G Guzman, L C Sánchez, J Gil Monsalve, C Ostos and O Arnache\",\"doi\":\"10.1088/2053-1591/ad78ae\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thin films of Ni-Zn ferrite grown on MgO(111) single crystal substrate were prepared using radiofrequency magnetron sputtering, with a target of nominal composition Ni0.5Zn0.5Fe2O4. Subsequently, x-ray diffraction (XRD) was performed, which revealed characteristic reflections of a Ni-Zn ferrite structure, confirming the unique formation of the ferrite. X-ray photoelectron spectroscopy (XPS) revealed the presence of metal ions in their appropriate valence states within the crystalline structure of the Ni-Zn ferrite. The variation in binding energy observed in the thin film is attributed to changes in the environment of Fe3+ and Zn2+ or Ni2+ ions, resulting from the non-equilibrium distribution of cations in tetrahedral and octahedral sites. The saturation magnetization and the coercivity field were and 513 ± 32 Oe, respectively. In addition, ferromagnetic resonance studies were made using broad-band FMR spectroscopy based on a coplanar waveguide (CPW) spectrometer.\",\"PeriodicalId\":18530,\"journal\":{\"name\":\"Materials Research Express\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1591/ad78ae\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad78ae","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Growth, magnetic, and electronic properties of Ni-Zn ferrites thin films
Thin films of Ni-Zn ferrite grown on MgO(111) single crystal substrate were prepared using radiofrequency magnetron sputtering, with a target of nominal composition Ni0.5Zn0.5Fe2O4. Subsequently, x-ray diffraction (XRD) was performed, which revealed characteristic reflections of a Ni-Zn ferrite structure, confirming the unique formation of the ferrite. X-ray photoelectron spectroscopy (XPS) revealed the presence of metal ions in their appropriate valence states within the crystalline structure of the Ni-Zn ferrite. The variation in binding energy observed in the thin film is attributed to changes in the environment of Fe3+ and Zn2+ or Ni2+ ions, resulting from the non-equilibrium distribution of cations in tetrahedral and octahedral sites. The saturation magnetization and the coercivity field were and 513 ± 32 Oe, respectively. In addition, ferromagnetic resonance studies were made using broad-band FMR spectroscopy based on a coplanar waveguide (CPW) spectrometer.
期刊介绍:
A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.