使用位置敏感哈希算法对合并树进行快速比较分析

Weiran Lyu, Raghavendra Sridharamurthy, Jeff M. Phillips, Bei Wang
{"title":"使用位置敏感哈希算法对合并树进行快速比较分析","authors":"Weiran Lyu, Raghavendra Sridharamurthy, Jeff M. Phillips, Bei Wang","doi":"arxiv-2409.08519","DOIUrl":null,"url":null,"abstract":"Scalar field comparison is a fundamental task in scientific visualization. In\ntopological data analysis, we compare topological descriptors of scalar fields\n-- such as persistence diagrams and merge trees -- because they provide\nsuccinct and robust abstract representations. Several similarity measures for\ntopological descriptors seem to be both asymptotically and practically\nefficient with polynomial time algorithms, but they do not scale well when\nhandling large-scale, time-varying scientific data and ensembles. In this\npaper, we propose a new framework to facilitate the comparative analysis of\nmerge trees, inspired by tools from locality sensitive hashing (LSH). LSH\nhashes similar objects into the same hash buckets with high probability. We\npropose two new similarity measures for merge trees that can be computed via\nLSH, using new extensions to Recursive MinHash and subpath signature,\nrespectively. Our similarity measures are extremely efficient to compute and\nclosely resemble the results of existing measures such as merge tree edit\ndistance or geometric interleaving distance. Our experiments demonstrate the\nutility of our LSH framework in applications such as shape matching,\nclustering, key event detection, and ensemble summarization.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing\",\"authors\":\"Weiran Lyu, Raghavendra Sridharamurthy, Jeff M. Phillips, Bei Wang\",\"doi\":\"arxiv-2409.08519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scalar field comparison is a fundamental task in scientific visualization. In\\ntopological data analysis, we compare topological descriptors of scalar fields\\n-- such as persistence diagrams and merge trees -- because they provide\\nsuccinct and robust abstract representations. Several similarity measures for\\ntopological descriptors seem to be both asymptotically and practically\\nefficient with polynomial time algorithms, but they do not scale well when\\nhandling large-scale, time-varying scientific data and ensembles. In this\\npaper, we propose a new framework to facilitate the comparative analysis of\\nmerge trees, inspired by tools from locality sensitive hashing (LSH). LSH\\nhashes similar objects into the same hash buckets with high probability. We\\npropose two new similarity measures for merge trees that can be computed via\\nLSH, using new extensions to Recursive MinHash and subpath signature,\\nrespectively. Our similarity measures are extremely efficient to compute and\\nclosely resemble the results of existing measures such as merge tree edit\\ndistance or geometric interleaving distance. Our experiments demonstrate the\\nutility of our LSH framework in applications such as shape matching,\\nclustering, key event detection, and ensemble summarization.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

标量场比较是科学可视化的一项基本任务。在拓扑数据分析中,我们会比较标量场的拓扑描述符(如持久图和合并树),因为它们提供了清晰而稳健的抽象表示。拓扑描述符的几种相似性度量似乎在渐近和实际操作上都很有效,而且采用了多项式时间算法,但在处理大规模时变科学数据和集合时,它们的扩展性并不好。在本文中,我们受局部敏感散列(LSH)工具的启发,提出了一种新的框架来促进合并树的比较分析。LSH 能将相似对象高概率地散列在同一个散列桶中。我们为合并树提出了两种新的相似性度量,分别使用递归最小散列(Recursive MinHash)和子路径签名(subpath signature)的新扩展,可以通过 LSH 计算。我们的相似性度量计算效率极高,与合并树编辑距离或几何交错距离等现有度量的结果非常相似。我们的实验证明了 LSH 框架在形状匹配、聚类、关键事件检测和集合汇总等应用中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
Scalar field comparison is a fundamental task in scientific visualization. In topological data analysis, we compare topological descriptors of scalar fields -- such as persistence diagrams and merge trees -- because they provide succinct and robust abstract representations. Several similarity measures for topological descriptors seem to be both asymptotically and practically efficient with polynomial time algorithms, but they do not scale well when handling large-scale, time-varying scientific data and ensembles. In this paper, we propose a new framework to facilitate the comparative analysis of merge trees, inspired by tools from locality sensitive hashing (LSH). LSH hashes similar objects into the same hash buckets with high probability. We propose two new similarity measures for merge trees that can be computed via LSH, using new extensions to Recursive MinHash and subpath signature, respectively. Our similarity measures are extremely efficient to compute and closely resemble the results of existing measures such as merge tree edit distance or geometric interleaving distance. Our experiments demonstrate the utility of our LSH framework in applications such as shape matching, clustering, key event detection, and ensemble summarization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum Plane Bichromatic Spanning Trees Evolving Distributions Under Local Motion New Lower Bound and Algorithms for Online Geometric Hitting Set Problem Computing shortest paths amid non-overlapping weighted disks Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1