软球填料能量景观中的海市蜃楼

Praharsh Suryadevara, Mathias Casiulis, Stefano Martiniani
{"title":"软球填料能量景观中的海市蜃楼","authors":"Praharsh Suryadevara, Mathias Casiulis, Stefano Martiniani","doi":"arxiv-2409.12113","DOIUrl":null,"url":null,"abstract":"The energy landscape is central to understanding low-temperature and athermal\nsystems, like jammed soft spheres. The geometry of this high-dimensional energy\nsurface is controlled by a plethora of minima and their associated basins of\nattraction that escape analytical treatment and are thus studied numerically.\nWe show that the ODE solver with the best time-for-error for this problem,\nCVODE, is orders of magnitude faster than other steepest-descent solvers for\nsuch systems. Using this algorithm, we provide unequivocal evidence that\noptimizers widely used in computational studies destroy all semblance of the\ntrue landscape geometry, even in moderate dimensions. Using various geometric\nindicators, both low- and high-dimensional, we show that results on the\nfractality of basins of attraction originated from the use of inadequate\nmapping strategies, as basins are actually smooth structures with well-defined\nlength scales. Thus, a vast number of past claims on energy landscapes need to\nbe re-evaluated due to the use of inadequate numerical methods.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mirages in the Energy Landscape of Soft Sphere Packings\",\"authors\":\"Praharsh Suryadevara, Mathias Casiulis, Stefano Martiniani\",\"doi\":\"arxiv-2409.12113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy landscape is central to understanding low-temperature and athermal\\nsystems, like jammed soft spheres. The geometry of this high-dimensional energy\\nsurface is controlled by a plethora of minima and their associated basins of\\nattraction that escape analytical treatment and are thus studied numerically.\\nWe show that the ODE solver with the best time-for-error for this problem,\\nCVODE, is orders of magnitude faster than other steepest-descent solvers for\\nsuch systems. Using this algorithm, we provide unequivocal evidence that\\noptimizers widely used in computational studies destroy all semblance of the\\ntrue landscape geometry, even in moderate dimensions. Using various geometric\\nindicators, both low- and high-dimensional, we show that results on the\\nfractality of basins of attraction originated from the use of inadequate\\nmapping strategies, as basins are actually smooth structures with well-defined\\nlength scales. Thus, a vast number of past claims on energy landscapes need to\\nbe re-evaluated due to the use of inadequate numerical methods.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

能量面是理解低温和无热系统(如卡住的软球)的核心。这种高维能量面的几何形状由大量的极小值及其相关的吸引盆地所控制,这些极小值和吸引盆地无法进行分析处理,因此只能通过数值方法进行研究。利用这种算法,我们提供了明确的证据,证明在计算研究中广泛使用的优化器会破坏真实景观几何的所有外观,即使在中等维度中也是如此。通过使用各种几何指标(包括低维和高维),我们证明了关于吸引力盆地折裂性的结果源自于使用了不适当的映射策略,因为盆地实际上是具有明确长度尺度的平滑结构。因此,由于使用了不恰当的数值方法,过去关于能量景观的大量说法需要重新评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mirages in the Energy Landscape of Soft Sphere Packings
The energy landscape is central to understanding low-temperature and athermal systems, like jammed soft spheres. The geometry of this high-dimensional energy surface is controlled by a plethora of minima and their associated basins of attraction that escape analytical treatment and are thus studied numerically. We show that the ODE solver with the best time-for-error for this problem, CVODE, is orders of magnitude faster than other steepest-descent solvers for such systems. Using this algorithm, we provide unequivocal evidence that optimizers widely used in computational studies destroy all semblance of the true landscape geometry, even in moderate dimensions. Using various geometric indicators, both low- and high-dimensional, we show that results on the fractality of basins of attraction originated from the use of inadequate mapping strategies, as basins are actually smooth structures with well-defined length scales. Thus, a vast number of past claims on energy landscapes need to be re-evaluated due to the use of inadequate numerical methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mirages in the Energy Landscape of Soft Sphere Packings Shock propagation in a driven hard sphere gas: molecular dynamics simulations and hydrodynamics Thermal transport in long-range interacting harmonic chains perturbed by long-range conservative noise Not-so-glass-like Caging and Fluctuations of an Active Matter Model Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1