社交媒体合成影响群体对无标度网络的共识效应

Giuliano G. Porciúncula, Marcone I. Sena Júnior, Luiz Felipe C. Pereira, André L. M. Vilela
{"title":"社交媒体合成影响群体对无标度网络的共识效应","authors":"Giuliano G. Porciúncula, Marcone I. Sena Júnior, Luiz Felipe C. Pereira, André L. M. Vilela","doi":"arxiv-2409.10830","DOIUrl":null,"url":null,"abstract":"Online platforms for social interactions are an essential part of modern\nsociety. With the advance of technology and the rise of algorithms and AI,\ncontent is now filtered systematically and facilitates the formation of filter\nbubbles. This work investigates the social consensus under limited visibility\nin a two-state majority-vote model on Barab\\'asi-Albert scale-free networks. In\nthe consensus evolution, each individual assimilates the opinion of the\nmajority of their neighbors with probability $1-q$ and disagrees with chance\n$q$, known as the noise parameter. We define the visibility parameter $V$ as\nthe probability of an individual considering the opinion of a neighbor at a\ngiven interaction. The parameter $V$ enables us to model the limited visibility\nphenomenon that produces synthetic neighborhoods in online interactions. We\nemploy Monte Carlo simulations and finite-size scaling analysis to obtain the\ncritical noise parameter as a function of the visibility $V$ and the growth\nparameter $z$. We find the critical exponents $\\beta/\\bar{\\nu}$,\n$\\gamma/\\bar{\\nu}$ and $1/\\bar{\\nu}$ of and validate their unitary relation for\ncomplex networks. Our analysis shows that installing and manipulating synthetic\ninfluence groups critically undermines consensus robustness.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consensus effects of social media synthetic influence groups on scale-free networks\",\"authors\":\"Giuliano G. Porciúncula, Marcone I. Sena Júnior, Luiz Felipe C. Pereira, André L. M. Vilela\",\"doi\":\"arxiv-2409.10830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online platforms for social interactions are an essential part of modern\\nsociety. With the advance of technology and the rise of algorithms and AI,\\ncontent is now filtered systematically and facilitates the formation of filter\\nbubbles. This work investigates the social consensus under limited visibility\\nin a two-state majority-vote model on Barab\\\\'asi-Albert scale-free networks. In\\nthe consensus evolution, each individual assimilates the opinion of the\\nmajority of their neighbors with probability $1-q$ and disagrees with chance\\n$q$, known as the noise parameter. We define the visibility parameter $V$ as\\nthe probability of an individual considering the opinion of a neighbor at a\\ngiven interaction. The parameter $V$ enables us to model the limited visibility\\nphenomenon that produces synthetic neighborhoods in online interactions. We\\nemploy Monte Carlo simulations and finite-size scaling analysis to obtain the\\ncritical noise parameter as a function of the visibility $V$ and the growth\\nparameter $z$. We find the critical exponents $\\\\beta/\\\\bar{\\\\nu}$,\\n$\\\\gamma/\\\\bar{\\\\nu}$ and $1/\\\\bar{\\\\nu}$ of and validate their unitary relation for\\ncomplex networks. Our analysis shows that installing and manipulating synthetic\\ninfluence groups critically undermines consensus robustness.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在线社交互动平台是现代社会的重要组成部分。随着技术的进步以及算法和人工智能的兴起,现在的内容都是经过系统过滤的,这有利于过滤泡的形成。这项工作研究了在巴拉布(Barab\'asi-Albert)无标度网络上的双状态多数票模型中,有限可见度下的社会共识。在共识演化过程中,每个人都会以 1-q$ 的概率吸收其邻居大多数人的意见,并以 q$ 的概率(即噪声参数)提出不同意见。我们将可见度参数 $V$ 定义为个体在某次互动中考虑邻居意见的概率。参数 $V$ 使我们能够模拟在线互动中产生合成邻域的有限可见度现象。我们通过蒙特卡罗模拟和有限规模缩放分析,得到了临界噪声参数与可见度 $V$ 和增长参数 $z$ 的函数关系。我们找到了临界指数 $/beta/bar/{nu}$、$\gamma/bar/{nu}$ 和 $1/bar/{nu}$,并验证了它们与复杂网络的单元关系。我们的分析表明,安装和操纵合成影响组会严重破坏共识的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Consensus effects of social media synthetic influence groups on scale-free networks
Online platforms for social interactions are an essential part of modern society. With the advance of technology and the rise of algorithms and AI, content is now filtered systematically and facilitates the formation of filter bubbles. This work investigates the social consensus under limited visibility in a two-state majority-vote model on Barab\'asi-Albert scale-free networks. In the consensus evolution, each individual assimilates the opinion of the majority of their neighbors with probability $1-q$ and disagrees with chance $q$, known as the noise parameter. We define the visibility parameter $V$ as the probability of an individual considering the opinion of a neighbor at a given interaction. The parameter $V$ enables us to model the limited visibility phenomenon that produces synthetic neighborhoods in online interactions. We employ Monte Carlo simulations and finite-size scaling analysis to obtain the critical noise parameter as a function of the visibility $V$ and the growth parameter $z$. We find the critical exponents $\beta/\bar{\nu}$, $\gamma/\bar{\nu}$ and $1/\bar{\nu}$ of and validate their unitary relation for complex networks. Our analysis shows that installing and manipulating synthetic influence groups critically undermines consensus robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mirages in the Energy Landscape of Soft Sphere Packings Shock propagation in a driven hard sphere gas: molecular dynamics simulations and hydrodynamics Thermal transport in long-range interacting harmonic chains perturbed by long-range conservative noise Not-so-glass-like Caging and Fluctuations of an Active Matter Model Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1