活性物质的热力学几何控制

Yating Wang, Enmai Lei, Yu-Han Ma, Z. C. Tu, Geng Li
{"title":"活性物质的热力学几何控制","authors":"Yating Wang, Enmai Lei, Yu-Han Ma, Z. C. Tu, Geng Li","doi":"arxiv-2409.09994","DOIUrl":null,"url":null,"abstract":"Active matter represents a class of non-equilibrium systems that constantly\ndissipate energy to produce directed motion. The thermodynamic control of\nactive matter holds great potential for advancements in synthetic molecular\nmotors, targeted drug delivery, and adaptive smart materials. However, the\ninherently non-equilibrium nature of active matter poses a significant\nchallenge in achieving optimal control with minimal energy cost. In this work,\nwe extend the concept of thermodynamic geometry, traditionally applied to\npassive systems, to active matter, proposing a systematic geometric framework\nfor minimizing energy cost in non-equilibrium driving processes. We derive a\ncost metric that defines a Riemannian manifold for control parameters, enabling\nthe use of powerful geometric tools to determine optimal control protocols. The\ngeometric perspective reveals that, unlike in passive systems, minimizing\nenergy cost in active systems involves a trade-off between intrinsic and\nexternal dissipation, leading to an optimal transportation speed that coincides\nwith the self-propulsion speed of active matter. This insight enriches the\nbroader concept of thermodynamic geometry. We demonstrate the application of\nthis approach by optimizing the performance of an active monothermal engine\nwithin this geometric framework.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Geometric Control of Active Matter\",\"authors\":\"Yating Wang, Enmai Lei, Yu-Han Ma, Z. C. Tu, Geng Li\",\"doi\":\"arxiv-2409.09994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active matter represents a class of non-equilibrium systems that constantly\\ndissipate energy to produce directed motion. The thermodynamic control of\\nactive matter holds great potential for advancements in synthetic molecular\\nmotors, targeted drug delivery, and adaptive smart materials. However, the\\ninherently non-equilibrium nature of active matter poses a significant\\nchallenge in achieving optimal control with minimal energy cost. In this work,\\nwe extend the concept of thermodynamic geometry, traditionally applied to\\npassive systems, to active matter, proposing a systematic geometric framework\\nfor minimizing energy cost in non-equilibrium driving processes. We derive a\\ncost metric that defines a Riemannian manifold for control parameters, enabling\\nthe use of powerful geometric tools to determine optimal control protocols. The\\ngeometric perspective reveals that, unlike in passive systems, minimizing\\nenergy cost in active systems involves a trade-off between intrinsic and\\nexternal dissipation, leading to an optimal transportation speed that coincides\\nwith the self-propulsion speed of active matter. This insight enriches the\\nbroader concept of thermodynamic geometry. We demonstrate the application of\\nthis approach by optimizing the performance of an active monothermal engine\\nwithin this geometric framework.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有源物质是一类非平衡系统,它不断释放能量以产生定向运动。活性物质的热力学控制为合成分子马达、靶向给药和自适应智能材料的发展带来了巨大潜力。然而,活性物质固有的非平衡特性给以最小能量成本实现最优控制带来了巨大挑战。在这项工作中,我们将传统上应用于被动系统的热力学几何概念扩展到了主动物质,提出了一个系统的几何框架,以最小化非平衡态驱动过程中的能量成本。我们得出的成本度量定义了控制参数的黎曼流形,从而能够使用强大的几何工具来确定最优控制方案。几何视角揭示出,与被动系统不同,主动系统中能量成本的最小化涉及内在耗散与外在耗散之间的权衡,从而导致与主动物质自推进速度相吻合的最佳运输速度。这一见解丰富了热力学几何这一更广泛的概念。我们在这一几何框架内优化了主动单热引擎的性能,从而展示了这一方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamic Geometric Control of Active Matter
Active matter represents a class of non-equilibrium systems that constantly dissipate energy to produce directed motion. The thermodynamic control of active matter holds great potential for advancements in synthetic molecular motors, targeted drug delivery, and adaptive smart materials. However, the inherently non-equilibrium nature of active matter poses a significant challenge in achieving optimal control with minimal energy cost. In this work, we extend the concept of thermodynamic geometry, traditionally applied to passive systems, to active matter, proposing a systematic geometric framework for minimizing energy cost in non-equilibrium driving processes. We derive a cost metric that defines a Riemannian manifold for control parameters, enabling the use of powerful geometric tools to determine optimal control protocols. The geometric perspective reveals that, unlike in passive systems, minimizing energy cost in active systems involves a trade-off between intrinsic and external dissipation, leading to an optimal transportation speed that coincides with the self-propulsion speed of active matter. This insight enriches the broader concept of thermodynamic geometry. We demonstrate the application of this approach by optimizing the performance of an active monothermal engine within this geometric framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mirages in the Energy Landscape of Soft Sphere Packings Shock propagation in a driven hard sphere gas: molecular dynamics simulations and hydrodynamics Thermal transport in long-range interacting harmonic chains perturbed by long-range conservative noise Not-so-glass-like Caging and Fluctuations of an Active Matter Model Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1