利用矩阵乘积状态学习广义统计力学

Pablo Díez-Valle, Fernando Martínez-García, Juan José García-Ripoll, Diego Porras
{"title":"利用矩阵乘积状态学习广义统计力学","authors":"Pablo Díez-Valle, Fernando Martínez-García, Juan José García-Ripoll, Diego Porras","doi":"arxiv-2409.08352","DOIUrl":null,"url":null,"abstract":"We introduce a variational algorithm based on Matrix Product States that is\ntrained by minimizing a generalized free energy defined using Tsallis entropy\ninstead of the standard Gibbs entropy. As a result, our model can generate the\nprobability distributions associated with generalized statistical mechanics.\nThe resulting model can be efficiently trained, since the resulting free energy\nand its gradient can be calculated exactly through tensor network contractions,\nas opposed to standard methods which require estimating the Gibbs entropy by\nsampling. We devise a variational annealing scheme by ramping up the inverse\ntemperature, which allows us to train the model while avoiding getting trapped\nin local minima. We show the validity of our approach in Ising spin-glass\nproblems by comparing it to exact numerical results and quasi-exact analytical\napproximations. Our work opens up new possibilities for studying generalized\nstatistical physics and solving combinatorial optimization problems with tensor\nnetworks.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Generalized Statistical Mechanics with Matrix Product States\",\"authors\":\"Pablo Díez-Valle, Fernando Martínez-García, Juan José García-Ripoll, Diego Porras\",\"doi\":\"arxiv-2409.08352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a variational algorithm based on Matrix Product States that is\\ntrained by minimizing a generalized free energy defined using Tsallis entropy\\ninstead of the standard Gibbs entropy. As a result, our model can generate the\\nprobability distributions associated with generalized statistical mechanics.\\nThe resulting model can be efficiently trained, since the resulting free energy\\nand its gradient can be calculated exactly through tensor network contractions,\\nas opposed to standard methods which require estimating the Gibbs entropy by\\nsampling. We devise a variational annealing scheme by ramping up the inverse\\ntemperature, which allows us to train the model while avoiding getting trapped\\nin local minima. We show the validity of our approach in Ising spin-glass\\nproblems by comparing it to exact numerical results and quasi-exact analytical\\napproximations. Our work opens up new possibilities for studying generalized\\nstatistical physics and solving combinatorial optimization problems with tensor\\nnetworks.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种基于矩阵乘积状态的变分算法,该算法通过最小化使用查里斯熵而非标准吉布斯熵定义的广义自由能进行训练。由此,我们的模型可以生成与广义统计力学相关的概率分布。由此产生的模型可以高效地进行训练,因为由此产生的自由能及其梯度可以通过张量网络收缩精确计算,而标准方法则需要通过采样来估计吉布斯熵。我们设计了一种变异退火方案,通过提高逆设温度,在训练模型的同时避免陷入局部极小值。通过与精确数值结果和准精确分析近似值的比较,我们证明了我们的方法在伊辛自旋玻璃问题中的有效性。我们的工作为研究广义统计物理和解决张网络的组合优化问题开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Generalized Statistical Mechanics with Matrix Product States
We introduce a variational algorithm based on Matrix Product States that is trained by minimizing a generalized free energy defined using Tsallis entropy instead of the standard Gibbs entropy. As a result, our model can generate the probability distributions associated with generalized statistical mechanics. The resulting model can be efficiently trained, since the resulting free energy and its gradient can be calculated exactly through tensor network contractions, as opposed to standard methods which require estimating the Gibbs entropy by sampling. We devise a variational annealing scheme by ramping up the inverse temperature, which allows us to train the model while avoiding getting trapped in local minima. We show the validity of our approach in Ising spin-glass problems by comparing it to exact numerical results and quasi-exact analytical approximations. Our work opens up new possibilities for studying generalized statistical physics and solving combinatorial optimization problems with tensor networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mirages in the Energy Landscape of Soft Sphere Packings Shock propagation in a driven hard sphere gas: molecular dynamics simulations and hydrodynamics Thermal transport in long-range interacting harmonic chains perturbed by long-range conservative noise Not-so-glass-like Caging and Fluctuations of an Active Matter Model Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1