Deep J. Kalita, Pratiksha Bhorali, Supriya Khundrakpam, Sanjib Gogoi
{"title":"铑(III)催化 (5 + 2) 嵌合反应合成硝基和氰基取代的苯并[b]氧杂卓","authors":"Deep J. Kalita, Pratiksha Bhorali, Supriya Khundrakpam, Sanjib Gogoi","doi":"10.1002/ajoc.202400392","DOIUrl":null,"url":null,"abstract":"A Rh(III)‐catalyzed annulation reaction of 2‐(2‐nitrovinyl)phenols and disubstituted alkynes is developed to complete the first synthesis of biologically important 4‐nitro substituted benzo[b]oxepines. The same reaction conditions are also applied for the efficient synthesis of 4‐cyano substituted benzo[b]oxepines which have high biological significance. Some of the synthesized 4‐nitrobenzo[b]oxepines are easily transformed to triazole fused dibenzo[b]oxepines.","PeriodicalId":130,"journal":{"name":"Asian Journal of Organic Chemistry","volume":"209 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rhodium(III)‐Catalyzed (5 + 2) Annulation Reaction for the Synthesis of Nitro and Cyano Substituted Benzo[b]oxepines\",\"authors\":\"Deep J. Kalita, Pratiksha Bhorali, Supriya Khundrakpam, Sanjib Gogoi\",\"doi\":\"10.1002/ajoc.202400392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Rh(III)‐catalyzed annulation reaction of 2‐(2‐nitrovinyl)phenols and disubstituted alkynes is developed to complete the first synthesis of biologically important 4‐nitro substituted benzo[b]oxepines. The same reaction conditions are also applied for the efficient synthesis of 4‐cyano substituted benzo[b]oxepines which have high biological significance. Some of the synthesized 4‐nitrobenzo[b]oxepines are easily transformed to triazole fused dibenzo[b]oxepines.\",\"PeriodicalId\":130,\"journal\":{\"name\":\"Asian Journal of Organic Chemistry\",\"volume\":\"209 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/ajoc.202400392\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/ajoc.202400392","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Rhodium(III)‐Catalyzed (5 + 2) Annulation Reaction for the Synthesis of Nitro and Cyano Substituted Benzo[b]oxepines
A Rh(III)‐catalyzed annulation reaction of 2‐(2‐nitrovinyl)phenols and disubstituted alkynes is developed to complete the first synthesis of biologically important 4‐nitro substituted benzo[b]oxepines. The same reaction conditions are also applied for the efficient synthesis of 4‐cyano substituted benzo[b]oxepines which have high biological significance. Some of the synthesized 4‐nitrobenzo[b]oxepines are easily transformed to triazole fused dibenzo[b]oxepines.
期刊介绍:
Organic chemistry is the fundamental science that stands at the heart of chemistry, biology, and materials science. Research in these areas is vigorous and truly international, with three major regions making almost equal contributions: America, Europe and Asia. Asia now has its own top international organic chemistry journal—the Asian Journal of Organic Chemistry (AsianJOC)
The AsianJOC is designed to be a top-ranked international research journal and publishes primary research as well as critical secondary information from authors across the world. The journal covers organic chemistry in its entirety. Authors and readers come from academia, the chemical industry, and government laboratories.