高效活化 N 和 S 共掺磁性生物炭,促进过硫酸单胞菌降解四环素

IF 1.8 4区 工程技术 Q3 Chemical Engineering Asia-Pacific Journal of Chemical Engineering Pub Date : 2024-09-15 DOI:10.1002/apj.3156
Xi Zhang, Haoyuan Zheng, Hong Xu, Jie Huang, Qianyuan Mo, Guishang Sheng
{"title":"高效活化 N 和 S 共掺磁性生物炭,促进过硫酸单胞菌降解四环素","authors":"Xi Zhang, Haoyuan Zheng, Hong Xu, Jie Huang, Qianyuan Mo, Guishang Sheng","doi":"10.1002/apj.3156","DOIUrl":null,"url":null,"abstract":"N-S co-doped magnetic biochar (NSMBC) was synthesized by a two-step pyrolysis technique and used for the degradation of tetracycline (TC) by activated persulfate (peroxomonosulfate [PMS]). Batch experiments showed that the pyrolysis temperature and doping ratio affected the catalytic performance of NSMBC. The degradation rate of TC in the NSMBC/PMS system prepared at 350°C with a doping ratio of 33% was up to 94.50%, and the system exhibited strong pH adaptability and resistance to environmental interference. The results of free radical burst and electron paramagnetic resonance (EPR) spectroscopy experiments indicated the free radical pathway (SO<sub>4</sub><sup>•−</sup>) for TC degradation. In addition, NSMBC has good stability and excellent magnetic properties favorable for separation and recovery. This study not only provides a new idea for the synthesis of efficient and stable catalysts but also provides a green pathway for the resourceization of pomelo peel waste.","PeriodicalId":8852,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient activation of N and S co-doped magnetic biochar for peroxomonosulfate degradation of tetracycline\",\"authors\":\"Xi Zhang, Haoyuan Zheng, Hong Xu, Jie Huang, Qianyuan Mo, Guishang Sheng\",\"doi\":\"10.1002/apj.3156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"N-S co-doped magnetic biochar (NSMBC) was synthesized by a two-step pyrolysis technique and used for the degradation of tetracycline (TC) by activated persulfate (peroxomonosulfate [PMS]). Batch experiments showed that the pyrolysis temperature and doping ratio affected the catalytic performance of NSMBC. The degradation rate of TC in the NSMBC/PMS system prepared at 350°C with a doping ratio of 33% was up to 94.50%, and the system exhibited strong pH adaptability and resistance to environmental interference. The results of free radical burst and electron paramagnetic resonance (EPR) spectroscopy experiments indicated the free radical pathway (SO<sub>4</sub><sup>•−</sup>) for TC degradation. In addition, NSMBC has good stability and excellent magnetic properties favorable for separation and recovery. This study not only provides a new idea for the synthesis of efficient and stable catalysts but also provides a green pathway for the resourceization of pomelo peel waste.\",\"PeriodicalId\":8852,\"journal\":{\"name\":\"Asia-Pacific Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/apj.3156\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/apj.3156","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

通过两步热解技术合成了 N-S 共掺杂磁性生物炭(NSMBC),并将其用于活化过硫酸盐(过硫酸单胞菌 [PMS])降解四环素(TC)。批量实验结果表明,热解温度和掺杂率会影响 NSMBC 的催化性能。掺杂比为 33% 的 NSMBC/PMS 体系在 350°C 下的 TC 降解率高达 94.50%,且该体系具有较强的 pH 适应性和抗环境干扰能力。自由基猝灭和电子顺磁共振(EPR)光谱实验结果表明,自由基(SO4--)是降解 TC 的途径。此外,NSMBC 具有良好的稳定性和优异的磁性,有利于分离和回收。这项研究不仅为合成高效稳定的催化剂提供了新思路,也为柚子皮废弃物的资源化提供了一条绿色通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient activation of N and S co-doped magnetic biochar for peroxomonosulfate degradation of tetracycline
N-S co-doped magnetic biochar (NSMBC) was synthesized by a two-step pyrolysis technique and used for the degradation of tetracycline (TC) by activated persulfate (peroxomonosulfate [PMS]). Batch experiments showed that the pyrolysis temperature and doping ratio affected the catalytic performance of NSMBC. The degradation rate of TC in the NSMBC/PMS system prepared at 350°C with a doping ratio of 33% was up to 94.50%, and the system exhibited strong pH adaptability and resistance to environmental interference. The results of free radical burst and electron paramagnetic resonance (EPR) spectroscopy experiments indicated the free radical pathway (SO4•−) for TC degradation. In addition, NSMBC has good stability and excellent magnetic properties favorable for separation and recovery. This study not only provides a new idea for the synthesis of efficient and stable catalysts but also provides a green pathway for the resourceization of pomelo peel waste.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asia-Pacific Journal of Chemical Engineering
Asia-Pacific Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
3.50
自引率
11.10%
发文量
111
审稿时长
2.8 months
期刊介绍: Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration. Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).
期刊最新文献
Efficient activation of N and S co-doped magnetic biochar for peroxomonosulfate degradation of tetracycline Sulfonated carbon–based heterogeneous acid catalysts in direct biomass redox flow fuel cell: A review Enhanced peroxidase‐like activity of MnFe2O4 nanoparticles on halloysite nanotubes for uric acid detection CO2 capture for environmental remediation with hollow fibre membrane: Impact of air gap and bore fluid ratio onto the morphology and performance An insight into the investigation of partition characteristics of flow fields based on chaos fractal theory in a jet impingement–negative‐pressure reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1