{"title":"分析生物炭在农业、环境和能源领域的应用趋势和热点:2022 年和 2023 年文献计量学研究","authors":"Ping Wu, Yingdong Fu, Tony Vancov, Hailong Wang, Yujun Wang, Wenfu Chen","doi":"10.1007/s42773-024-00370-x","DOIUrl":null,"url":null,"abstract":"<p>Biochar, produced from the thermochemical conversion of biomass waste, has various applications owing to its broad utility and advantageous properties. This study employs a scientometric approach to comprehensively assess the advancements in biochar application from 2022 to 2023. Utilizing 13,357 bibliographic records sourced from the Web of Science Core Collection with the search term “biochar”, the analysis focuses on authorship, national contributions, and keyword trends. Findings demonstrate a continual rise in annual publications since 2009, albeit with a moderated growth rate in 2023. China leads in publication outputs, followed by USA and India, with Hailong Wang emerging as a prominent figure in biochar research. Keyword co-occurrence analyses identify key research themes such as biochar’s role in climate change mitigation, easing salinity and drought stress, immobilizing toxic metals, degrading organic pollutants, serving as additives in anaerobic digestion, and functioning as electrodes in microbial fuel cells. Among these, biochar’s application for global climate change mitigation gains significant attention, while its utilization as electrodes in microbial fuel cells emerges as a promising research frontier, indicating the growing need for sustainable energy sources. The study also outlines critical research gaps and future priorities for enhancing biochar application. Overall, it highlights the diverse applicability of biochar and offers valuable insight into research progression and forthcoming directions in biochar studies.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"3 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing the trends and hotspots of biochar’s applications in agriculture, environment, and energy: a bibliometrics study for 2022 and 2023\",\"authors\":\"Ping Wu, Yingdong Fu, Tony Vancov, Hailong Wang, Yujun Wang, Wenfu Chen\",\"doi\":\"10.1007/s42773-024-00370-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biochar, produced from the thermochemical conversion of biomass waste, has various applications owing to its broad utility and advantageous properties. This study employs a scientometric approach to comprehensively assess the advancements in biochar application from 2022 to 2023. Utilizing 13,357 bibliographic records sourced from the Web of Science Core Collection with the search term “biochar”, the analysis focuses on authorship, national contributions, and keyword trends. Findings demonstrate a continual rise in annual publications since 2009, albeit with a moderated growth rate in 2023. China leads in publication outputs, followed by USA and India, with Hailong Wang emerging as a prominent figure in biochar research. Keyword co-occurrence analyses identify key research themes such as biochar’s role in climate change mitigation, easing salinity and drought stress, immobilizing toxic metals, degrading organic pollutants, serving as additives in anaerobic digestion, and functioning as electrodes in microbial fuel cells. Among these, biochar’s application for global climate change mitigation gains significant attention, while its utilization as electrodes in microbial fuel cells emerges as a promising research frontier, indicating the growing need for sustainable energy sources. The study also outlines critical research gaps and future priorities for enhancing biochar application. Overall, it highlights the diverse applicability of biochar and offers valuable insight into research progression and forthcoming directions in biochar studies.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":8789,\"journal\":{\"name\":\"Biochar\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochar\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s42773-024-00370-x\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00370-x","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Analyzing the trends and hotspots of biochar’s applications in agriculture, environment, and energy: a bibliometrics study for 2022 and 2023
Biochar, produced from the thermochemical conversion of biomass waste, has various applications owing to its broad utility and advantageous properties. This study employs a scientometric approach to comprehensively assess the advancements in biochar application from 2022 to 2023. Utilizing 13,357 bibliographic records sourced from the Web of Science Core Collection with the search term “biochar”, the analysis focuses on authorship, national contributions, and keyword trends. Findings demonstrate a continual rise in annual publications since 2009, albeit with a moderated growth rate in 2023. China leads in publication outputs, followed by USA and India, with Hailong Wang emerging as a prominent figure in biochar research. Keyword co-occurrence analyses identify key research themes such as biochar’s role in climate change mitigation, easing salinity and drought stress, immobilizing toxic metals, degrading organic pollutants, serving as additives in anaerobic digestion, and functioning as electrodes in microbial fuel cells. Among these, biochar’s application for global climate change mitigation gains significant attention, while its utilization as electrodes in microbial fuel cells emerges as a promising research frontier, indicating the growing need for sustainable energy sources. The study also outlines critical research gaps and future priorities for enhancing biochar application. Overall, it highlights the diverse applicability of biochar and offers valuable insight into research progression and forthcoming directions in biochar studies.
期刊介绍:
Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.