{"title":"掺杂杂原子的石墨碳纳米管作为先进钾离子电池的独立阳极。","authors":"Jiaqi Liu,Hanfeng Wu,Jiping Tang,Le Jiang,Zhenhan Wang,Yongjun Yuan,Wangfeng Bai,Xiaowei Shi,Shiting Wu","doi":"10.1088/1361-6528/ad7b3b","DOIUrl":null,"url":null,"abstract":"Owing to its higher earth element reserve and similar chemical properties to lithium, potassium ion batteries (PIBs) have been regarded as a potential alternative to lithium-ion batteries. And considering the relatively larger ionic radius of potassium, available electrode materials need to be equipped with enough space for volume expansion during charge-discharge cycles, thus graphitic carbon nanomaterials with adjustable layer spacing gradually come into researcher's version. Here with copper nanowires serving as growth template and organic polyvinyl pyrrolidone (PVP) providing carbon source, freestanding and ultra-light graphitic carbon nanotube (GCNT) aerogels were simply assembled and annealed, which were directly used as anodes of PIBs. Annealing parameters (temperature and atmosphere) were adapted to regulate the lattice order and interlayer spacing of GCNTs, and N, O heteroatoms derived from PVP were directly doped into the carbon lattice during thermal annealing, to optimize and enhance the cycle capacity and rate performance of GCNT anodes. The electrochemical potassium storage mechanism of GCNTs was also quantitatively analyzed. Most of the potassium ions are reversibly stored by squeezing into and escaping from the carbon lattice, and simultaneously oxygen-containing functional groups with different chemical states also offer active redox sites and dedicate partial capacity. Therefore, our assembled GCNTs with large lumen are expected to sandwich-like load with active substances efficiently, further constructing next-generation PIBs with excellent performance.","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heteroatom doped graphitic carbon nanotubes as freestanding anodes for advanced potassium-ion batteries.\",\"authors\":\"Jiaqi Liu,Hanfeng Wu,Jiping Tang,Le Jiang,Zhenhan Wang,Yongjun Yuan,Wangfeng Bai,Xiaowei Shi,Shiting Wu\",\"doi\":\"10.1088/1361-6528/ad7b3b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to its higher earth element reserve and similar chemical properties to lithium, potassium ion batteries (PIBs) have been regarded as a potential alternative to lithium-ion batteries. And considering the relatively larger ionic radius of potassium, available electrode materials need to be equipped with enough space for volume expansion during charge-discharge cycles, thus graphitic carbon nanomaterials with adjustable layer spacing gradually come into researcher's version. Here with copper nanowires serving as growth template and organic polyvinyl pyrrolidone (PVP) providing carbon source, freestanding and ultra-light graphitic carbon nanotube (GCNT) aerogels were simply assembled and annealed, which were directly used as anodes of PIBs. Annealing parameters (temperature and atmosphere) were adapted to regulate the lattice order and interlayer spacing of GCNTs, and N, O heteroatoms derived from PVP were directly doped into the carbon lattice during thermal annealing, to optimize and enhance the cycle capacity and rate performance of GCNT anodes. The electrochemical potassium storage mechanism of GCNTs was also quantitatively analyzed. Most of the potassium ions are reversibly stored by squeezing into and escaping from the carbon lattice, and simultaneously oxygen-containing functional groups with different chemical states also offer active redox sites and dedicate partial capacity. Therefore, our assembled GCNTs with large lumen are expected to sandwich-like load with active substances efficiently, further constructing next-generation PIBs with excellent performance.\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad7b3b\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad7b3b","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Heteroatom doped graphitic carbon nanotubes as freestanding anodes for advanced potassium-ion batteries.
Owing to its higher earth element reserve and similar chemical properties to lithium, potassium ion batteries (PIBs) have been regarded as a potential alternative to lithium-ion batteries. And considering the relatively larger ionic radius of potassium, available electrode materials need to be equipped with enough space for volume expansion during charge-discharge cycles, thus graphitic carbon nanomaterials with adjustable layer spacing gradually come into researcher's version. Here with copper nanowires serving as growth template and organic polyvinyl pyrrolidone (PVP) providing carbon source, freestanding and ultra-light graphitic carbon nanotube (GCNT) aerogels were simply assembled and annealed, which were directly used as anodes of PIBs. Annealing parameters (temperature and atmosphere) were adapted to regulate the lattice order and interlayer spacing of GCNTs, and N, O heteroatoms derived from PVP were directly doped into the carbon lattice during thermal annealing, to optimize and enhance the cycle capacity and rate performance of GCNT anodes. The electrochemical potassium storage mechanism of GCNTs was also quantitatively analyzed. Most of the potassium ions are reversibly stored by squeezing into and escaping from the carbon lattice, and simultaneously oxygen-containing functional groups with different chemical states also offer active redox sites and dedicate partial capacity. Therefore, our assembled GCNTs with large lumen are expected to sandwich-like load with active substances efficiently, further constructing next-generation PIBs with excellent performance.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.