Ruichao Mao, Jianping Guo, Lihua Bie, Lu-Ning Liu, Jun Gao
{"title":"光合作用反应中心-光收集 1 超级复合物中醌的隧道机制","authors":"Ruichao Mao, Jianping Guo, Lihua Bie, Lu-Ning Liu, Jun Gao","doi":"10.1002/smsc.202400188","DOIUrl":null,"url":null,"abstract":"In photosynthesis, light energy is absorbed and transferred to the reaction center, ultimately leading to the reduction of quinone molecules through the electron transfer chain. The oxidation and reduction of quinones generate an electrochemical potential difference used for adenosine triphosphate synthesis. The trafficking of quinone/quinol molecules between electron transport components has been a long-standing question. Here, an atomic-level investigation into the molecular mechanism of quinol dissociation in the photosynthetic reaction center–light-harvesting complex 1 (RC–LH1) supercomplexes from <i>Rhodopseudomonas palustris</i>, using classical molecular dynamics (MD) simulations combined with self-random acceleration MD-MD simulations and umbrella sampling methods, is conducted. Results reveal a significant increase in the mobility of quinone molecules upon reduction within RC–LH1, which is accompanied by conformational modifications in the local protein environment. Quinol molecules have a tendency to escape from RC–LH1 in a tail-first mode, exhibiting channel selectivity, with distinct preferred dissociation pathways in the closed and open LH1 rings. Furthermore, comparative analysis of free energy profiles indicates that alternations in the protein environment accelerate the dissociation of quinol molecules through the open LH1 ring. In particular, aromatic amino acids form <i>π</i>-stacking interactions with the quinol headgroup, resembling the key components in a conveyor belt system. This study provides insights into the molecular mechanisms that govern quinone/quinol exchange in bacterial photosynthesis and lays the framework for tuning electron flow and energy conversion to improve metabolic performance.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"47 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunneling Mechanisms of Quinones in Photosynthetic Reaction Center–Light Harvesting 1 Supercomplexes\",\"authors\":\"Ruichao Mao, Jianping Guo, Lihua Bie, Lu-Ning Liu, Jun Gao\",\"doi\":\"10.1002/smsc.202400188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In photosynthesis, light energy is absorbed and transferred to the reaction center, ultimately leading to the reduction of quinone molecules through the electron transfer chain. The oxidation and reduction of quinones generate an electrochemical potential difference used for adenosine triphosphate synthesis. The trafficking of quinone/quinol molecules between electron transport components has been a long-standing question. Here, an atomic-level investigation into the molecular mechanism of quinol dissociation in the photosynthetic reaction center–light-harvesting complex 1 (RC–LH1) supercomplexes from <i>Rhodopseudomonas palustris</i>, using classical molecular dynamics (MD) simulations combined with self-random acceleration MD-MD simulations and umbrella sampling methods, is conducted. Results reveal a significant increase in the mobility of quinone molecules upon reduction within RC–LH1, which is accompanied by conformational modifications in the local protein environment. Quinol molecules have a tendency to escape from RC–LH1 in a tail-first mode, exhibiting channel selectivity, with distinct preferred dissociation pathways in the closed and open LH1 rings. Furthermore, comparative analysis of free energy profiles indicates that alternations in the protein environment accelerate the dissociation of quinol molecules through the open LH1 ring. In particular, aromatic amino acids form <i>π</i>-stacking interactions with the quinol headgroup, resembling the key components in a conveyor belt system. This study provides insights into the molecular mechanisms that govern quinone/quinol exchange in bacterial photosynthesis and lays the framework for tuning electron flow and energy conversion to improve metabolic performance.\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202400188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tunneling Mechanisms of Quinones in Photosynthetic Reaction Center–Light Harvesting 1 Supercomplexes
In photosynthesis, light energy is absorbed and transferred to the reaction center, ultimately leading to the reduction of quinone molecules through the electron transfer chain. The oxidation and reduction of quinones generate an electrochemical potential difference used for adenosine triphosphate synthesis. The trafficking of quinone/quinol molecules between electron transport components has been a long-standing question. Here, an atomic-level investigation into the molecular mechanism of quinol dissociation in the photosynthetic reaction center–light-harvesting complex 1 (RC–LH1) supercomplexes from Rhodopseudomonas palustris, using classical molecular dynamics (MD) simulations combined with self-random acceleration MD-MD simulations and umbrella sampling methods, is conducted. Results reveal a significant increase in the mobility of quinone molecules upon reduction within RC–LH1, which is accompanied by conformational modifications in the local protein environment. Quinol molecules have a tendency to escape from RC–LH1 in a tail-first mode, exhibiting channel selectivity, with distinct preferred dissociation pathways in the closed and open LH1 rings. Furthermore, comparative analysis of free energy profiles indicates that alternations in the protein environment accelerate the dissociation of quinol molecules through the open LH1 ring. In particular, aromatic amino acids form π-stacking interactions with the quinol headgroup, resembling the key components in a conveyor belt system. This study provides insights into the molecular mechanisms that govern quinone/quinol exchange in bacterial photosynthesis and lays the framework for tuning electron flow and energy conversion to improve metabolic performance.
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.