Simo Kitanovski, Yingying Cao, Dimitris Ttoouli, Farnoush Farahpour, Jun Wang, Daniel Hoffmann
{"title":"scBubbletree:单细胞 RNA-seq 数据可视化计算方法","authors":"Simo Kitanovski, Yingying Cao, Dimitris Ttoouli, Farnoush Farahpour, Jun Wang, Daniel Hoffmann","doi":"10.1186/s12859-024-05927-y","DOIUrl":null,"url":null,"abstract":"Visualization approaches transform high-dimensional data from single cell RNA sequencing (scRNA-seq) experiments into two-dimensional plots that are used for analysis of cell relationships, and as a means of reporting biological insights. Yet, many standard approaches generate visuals that suffer from overplotting, lack of quantitative information, and distort global and local properties of biological patterns relative to the original high-dimensional space. We present scBubbletree, a new, scalable method for visualization of scRNA-seq data. The method identifies clusters of cells of similar transcriptomes and visualizes such clusters as “bubbles” at the tips of dendrograms (bubble trees), corresponding to quantitative summaries of cluster properties and relationships. scBubbletree stacks bubble trees with further cluster-associated information in a visually easily accessible way, thus facilitating quantitative assessment and biological interpretation of scRNA-seq data. We demonstrate this with large scRNA-seq data sets, including one with over 1.2 million cells. To facilitate coherent quantification and visualization of scRNA-seq data we developed the R-package scBubbletree, which is freely available as part of the Bioconductor repository at: https://bioconductor.org/packages/scBubbletree/ ","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scBubbletree: computational approach for visualization of single cell RNA-seq data\",\"authors\":\"Simo Kitanovski, Yingying Cao, Dimitris Ttoouli, Farnoush Farahpour, Jun Wang, Daniel Hoffmann\",\"doi\":\"10.1186/s12859-024-05927-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visualization approaches transform high-dimensional data from single cell RNA sequencing (scRNA-seq) experiments into two-dimensional plots that are used for analysis of cell relationships, and as a means of reporting biological insights. Yet, many standard approaches generate visuals that suffer from overplotting, lack of quantitative information, and distort global and local properties of biological patterns relative to the original high-dimensional space. We present scBubbletree, a new, scalable method for visualization of scRNA-seq data. The method identifies clusters of cells of similar transcriptomes and visualizes such clusters as “bubbles” at the tips of dendrograms (bubble trees), corresponding to quantitative summaries of cluster properties and relationships. scBubbletree stacks bubble trees with further cluster-associated information in a visually easily accessible way, thus facilitating quantitative assessment and biological interpretation of scRNA-seq data. We demonstrate this with large scRNA-seq data sets, including one with over 1.2 million cells. To facilitate coherent quantification and visualization of scRNA-seq data we developed the R-package scBubbletree, which is freely available as part of the Bioconductor repository at: https://bioconductor.org/packages/scBubbletree/ \",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05927-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05927-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
scBubbletree: computational approach for visualization of single cell RNA-seq data
Visualization approaches transform high-dimensional data from single cell RNA sequencing (scRNA-seq) experiments into two-dimensional plots that are used for analysis of cell relationships, and as a means of reporting biological insights. Yet, many standard approaches generate visuals that suffer from overplotting, lack of quantitative information, and distort global and local properties of biological patterns relative to the original high-dimensional space. We present scBubbletree, a new, scalable method for visualization of scRNA-seq data. The method identifies clusters of cells of similar transcriptomes and visualizes such clusters as “bubbles” at the tips of dendrograms (bubble trees), corresponding to quantitative summaries of cluster properties and relationships. scBubbletree stacks bubble trees with further cluster-associated information in a visually easily accessible way, thus facilitating quantitative assessment and biological interpretation of scRNA-seq data. We demonstrate this with large scRNA-seq data sets, including one with over 1.2 million cells. To facilitate coherent quantification and visualization of scRNA-seq data we developed the R-package scBubbletree, which is freely available as part of the Bioconductor repository at: https://bioconductor.org/packages/scBubbletree/
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.