测量序列推荐系统中的重复偏差

Jeonglyul Oh, Sungzoon Cho
{"title":"测量序列推荐系统中的重复偏差","authors":"Jeonglyul Oh, Sungzoon Cho","doi":"arxiv-2409.09722","DOIUrl":null,"url":null,"abstract":"Recency bias in a sequential recommendation system refers to the overly high\nemphasis placed on recent items within a user session. This bias can diminish\nthe serendipity of recommendations and hinder the system's ability to capture\nusers' long-term interests, leading to user disengagement. We propose a simple\nyet effective novel metric specifically designed to quantify recency bias. Our\nfindings also demonstrate that high recency bias measured in our proposed\nmetric adversely impacts recommendation performance too, and mitigating it\nresults in improved recommendation performances across all models evaluated in\nour experiments, thus highlighting the importance of measuring recency bias.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring Recency Bias In Sequential Recommendation Systems\",\"authors\":\"Jeonglyul Oh, Sungzoon Cho\",\"doi\":\"arxiv-2409.09722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recency bias in a sequential recommendation system refers to the overly high\\nemphasis placed on recent items within a user session. This bias can diminish\\nthe serendipity of recommendations and hinder the system's ability to capture\\nusers' long-term interests, leading to user disengagement. We propose a simple\\nyet effective novel metric specifically designed to quantify recency bias. Our\\nfindings also demonstrate that high recency bias measured in our proposed\\nmetric adversely impacts recommendation performance too, and mitigating it\\nresults in improved recommendation performances across all models evaluated in\\nour experiments, thus highlighting the importance of measuring recency bias.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

顺序推荐系统中的 "最近偏差 "是指在用户会话中过分强调最近的项目。这种偏差会降低推荐的偶然性,阻碍系统捕捉用户长期兴趣的能力,从而导致用户脱离。我们提出了一种简单而有效的新指标,专门用于量化重现偏差。我们的研究结果还表明,我们提出的指标所衡量的高重复性偏差也会对推荐性能产生不利影响,而减轻这种偏差则会提高我们实验中评估的所有模型的推荐性能,从而突出了衡量重复性偏差的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring Recency Bias In Sequential Recommendation Systems
Recency bias in a sequential recommendation system refers to the overly high emphasis placed on recent items within a user session. This bias can diminish the serendipity of recommendations and hinder the system's ability to capture users' long-term interests, leading to user disengagement. We propose a simple yet effective novel metric specifically designed to quantify recency bias. Our findings also demonstrate that high recency bias measured in our proposed metric adversely impacts recommendation performance too, and mitigating it results in improved recommendation performances across all models evaluated in our experiments, thus highlighting the importance of measuring recency bias.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1