jina-embeddings-v3:带任务 LoRA 的多语言嵌入法

Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krimmel, Feng Wang, Georgios Mastrapas, Andreas Koukounas, Andreas Koukounas, Nan Wang, Han Xiao
{"title":"jina-embeddings-v3:带任务 LoRA 的多语言嵌入法","authors":"Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krimmel, Feng Wang, Georgios Mastrapas, Andreas Koukounas, Andreas Koukounas, Nan Wang, Han Xiao","doi":"arxiv-2409.10173","DOIUrl":null,"url":null,"abstract":"We introduce jina-embeddings-v3, a novel text embedding model with 570\nmillion parameters, achieves state-of-the-art performance on multilingual data\nand long-context retrieval tasks, supporting context lengths of up to 8192\ntokens. The model includes a set of task-specific Low-Rank Adaptation (LoRA)\nadapters to generate high-quality embeddings for query-document retrieval,\nclustering, classification, and text matching. Additionally, Matryoshka\nRepresentation Learning is integrated into the training process, allowing\nflexible truncation of embedding dimensions without compromising performance.\nEvaluation on the MTEB benchmark shows that jina-embeddings-v3 outperforms the\nlatest proprietary embeddings from OpenAI and Cohere on English tasks, while\nachieving superior performance compared to multilingual-e5-large-instruct\nacross all multilingual tasks.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"jina-embeddings-v3: Multilingual Embeddings With Task LoRA\",\"authors\":\"Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krimmel, Feng Wang, Georgios Mastrapas, Andreas Koukounas, Andreas Koukounas, Nan Wang, Han Xiao\",\"doi\":\"arxiv-2409.10173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce jina-embeddings-v3, a novel text embedding model with 570\\nmillion parameters, achieves state-of-the-art performance on multilingual data\\nand long-context retrieval tasks, supporting context lengths of up to 8192\\ntokens. The model includes a set of task-specific Low-Rank Adaptation (LoRA)\\nadapters to generate high-quality embeddings for query-document retrieval,\\nclustering, classification, and text matching. Additionally, Matryoshka\\nRepresentation Learning is integrated into the training process, allowing\\nflexible truncation of embedding dimensions without compromising performance.\\nEvaluation on the MTEB benchmark shows that jina-embeddings-v3 outperforms the\\nlatest proprietary embeddings from OpenAI and Cohere on English tasks, while\\nachieving superior performance compared to multilingual-e5-large-instruct\\nacross all multilingual tasks.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了 jina-embeddings-v3,这是一种拥有 5.7 亿个参数的新型文本嵌入模型,在多语言数据和长文本检索任务中实现了最先进的性能,支持高达 8192 个字节的上下文长度。该模型包括一组特定任务的低库适配(Low-Rank Adaptation,LoRA)适配器,可为查询-文档检索、聚类、分类和文本匹配生成高质量的嵌入。在 MTEB 基准测试中的评估结果表明,jina-embeddings-v3 在英语任务中的表现优于 OpenAI 和 Cohere 的最新专有嵌入式模型,而在所有多语言任务中的表现则优于 multilingual-e5-large-instruct。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
jina-embeddings-v3: Multilingual Embeddings With Task LoRA
We introduce jina-embeddings-v3, a novel text embedding model with 570 million parameters, achieves state-of-the-art performance on multilingual data and long-context retrieval tasks, supporting context lengths of up to 8192 tokens. The model includes a set of task-specific Low-Rank Adaptation (LoRA) adapters to generate high-quality embeddings for query-document retrieval, clustering, classification, and text matching. Additionally, Matryoshka Representation Learning is integrated into the training process, allowing flexible truncation of embedding dimensions without compromising performance. Evaluation on the MTEB benchmark shows that jina-embeddings-v3 outperforms the latest proprietary embeddings from OpenAI and Cohere on English tasks, while achieving superior performance compared to multilingual-e5-large-instruct across all multilingual tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1