{"title":"采用多尺度上下文集成的特征自适应 FPN 用于水下物体探测","authors":"Shikha Bhalla, Ashish Kumar, Riti Kushwaha","doi":"10.1007/s12145-024-01473-6","DOIUrl":null,"url":null,"abstract":"<p>Underwater object detection is vital for diverse applications, from studies in marine biology to underwater robotics. However, underwater environments pose unique challenges, including reduced visibility due to color distortion, light attenuation, and complex backgrounds. Traditional computer vision methods have limitations, prompting the implementation of deep learning, for underwater object detection. Despite progress, challenges persist, such as visual degradation, scale variations, diverse marine species, and complex backgrounds. To address these issues, we propose Feature-Adaptive FPN with Multiscale Context Integration (FA-FPN-MCI), a novel deep-learning algorithm aimed at enhancing both detection and domain generalization performance. We integrate the Style Normalization and Restitution (SNR) module for domain generalization, Receptive Field Blocks (RFBs) for fine-grained detail capture, and a twin-branch Global Context Module (TBGCM) for multiscale context information. We enhance lateral connections within the Feature Pyramid Network (FPN) with deformable convolution. Experimental outcome reveal that the proposed method attains mean average precision of 84.2%. Additionally, other performance metrics were evaluated, and outperforming all other methods used for comparison.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":"15 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature-adaptive FPN with multiscale context integration for underwater object detection\",\"authors\":\"Shikha Bhalla, Ashish Kumar, Riti Kushwaha\",\"doi\":\"10.1007/s12145-024-01473-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Underwater object detection is vital for diverse applications, from studies in marine biology to underwater robotics. However, underwater environments pose unique challenges, including reduced visibility due to color distortion, light attenuation, and complex backgrounds. Traditional computer vision methods have limitations, prompting the implementation of deep learning, for underwater object detection. Despite progress, challenges persist, such as visual degradation, scale variations, diverse marine species, and complex backgrounds. To address these issues, we propose Feature-Adaptive FPN with Multiscale Context Integration (FA-FPN-MCI), a novel deep-learning algorithm aimed at enhancing both detection and domain generalization performance. We integrate the Style Normalization and Restitution (SNR) module for domain generalization, Receptive Field Blocks (RFBs) for fine-grained detail capture, and a twin-branch Global Context Module (TBGCM) for multiscale context information. We enhance lateral connections within the Feature Pyramid Network (FPN) with deformable convolution. Experimental outcome reveal that the proposed method attains mean average precision of 84.2%. Additionally, other performance metrics were evaluated, and outperforming all other methods used for comparison.</p>\",\"PeriodicalId\":49318,\"journal\":{\"name\":\"Earth Science Informatics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Science Informatics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12145-024-01473-6\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01473-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Feature-adaptive FPN with multiscale context integration for underwater object detection
Underwater object detection is vital for diverse applications, from studies in marine biology to underwater robotics. However, underwater environments pose unique challenges, including reduced visibility due to color distortion, light attenuation, and complex backgrounds. Traditional computer vision methods have limitations, prompting the implementation of deep learning, for underwater object detection. Despite progress, challenges persist, such as visual degradation, scale variations, diverse marine species, and complex backgrounds. To address these issues, we propose Feature-Adaptive FPN with Multiscale Context Integration (FA-FPN-MCI), a novel deep-learning algorithm aimed at enhancing both detection and domain generalization performance. We integrate the Style Normalization and Restitution (SNR) module for domain generalization, Receptive Field Blocks (RFBs) for fine-grained detail capture, and a twin-branch Global Context Module (TBGCM) for multiscale context information. We enhance lateral connections within the Feature Pyramid Network (FPN) with deformable convolution. Experimental outcome reveal that the proposed method attains mean average precision of 84.2%. Additionally, other performance metrics were evaluated, and outperforming all other methods used for comparison.
期刊介绍:
The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.