通过记忆进行在线学习:检索-增强探测器适应性

Yanan Jian, Fuxun Yu, Qi Zhang, William Levine, Brandon Dubbs, Nikolaos Karianakis
{"title":"通过记忆进行在线学习:检索-增强探测器适应性","authors":"Yanan Jian, Fuxun Yu, Qi Zhang, William Levine, Brandon Dubbs, Nikolaos Karianakis","doi":"arxiv-2409.10716","DOIUrl":null,"url":null,"abstract":"This paper presents a novel way of online adapting any off-the-shelf object\ndetection model to a novel domain without retraining the detector model.\nInspired by how humans quickly learn knowledge of a new subject (e.g.,\nmemorization), we allow the detector to look up similar object concepts from\nmemory during test time. This is achieved through a retrieval augmented\nclassification (RAC) module together with a memory bank that can be flexibly\nupdated with new domain knowledge. We experimented with various off-the-shelf\nopen-set detector and close-set detectors. With only a tiny memory bank (e.g.,\n10 images per category) and being training-free, our online learning method\ncould significantly outperform baselines in adapting a detector to novel\ndomains.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Learning via Memory: Retrieval-Augmented Detector Adaptation\",\"authors\":\"Yanan Jian, Fuxun Yu, Qi Zhang, William Levine, Brandon Dubbs, Nikolaos Karianakis\",\"doi\":\"arxiv-2409.10716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel way of online adapting any off-the-shelf object\\ndetection model to a novel domain without retraining the detector model.\\nInspired by how humans quickly learn knowledge of a new subject (e.g.,\\nmemorization), we allow the detector to look up similar object concepts from\\nmemory during test time. This is achieved through a retrieval augmented\\nclassification (RAC) module together with a memory bank that can be flexibly\\nupdated with new domain knowledge. We experimented with various off-the-shelf\\nopen-set detector and close-set detectors. With only a tiny memory bank (e.g.,\\n10 images per category) and being training-free, our online learning method\\ncould significantly outperform baselines in adapting a detector to novel\\ndomains.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受人类如何快速学习新学科知识(如记忆)的启发,我们允许检测器在测试期间从内存中查找类似的物体概念。这是通过一个检索增强分类(RAC)模块和一个记忆库来实现的,记忆库可以根据新的领域知识进行灵活更新。我们试用了各种现成的开集检测器和闭集检测器。我们的在线学习方法只需一个很小的内存库(例如每个类别 10 幅图像),而且无需训练,因此在将检测器适配到新领域方面的性能明显优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online Learning via Memory: Retrieval-Augmented Detector Adaptation
This paper presents a novel way of online adapting any off-the-shelf object detection model to a novel domain without retraining the detector model. Inspired by how humans quickly learn knowledge of a new subject (e.g., memorization), we allow the detector to look up similar object concepts from memory during test time. This is achieved through a retrieval augmented classification (RAC) module together with a memory bank that can be flexibly updated with new domain knowledge. We experimented with various off-the-shelf open-set detector and close-set detectors. With only a tiny memory bank (e.g., 10 images per category) and being training-free, our online learning method could significantly outperform baselines in adapting a detector to novel domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1