Abhay D. Bagul, Manish Kumar, Amer M. Alanazi, Aisha Tufail, Nasir Tufail, Digamber D. Gaikwad, Amit Dubey
{"title":"过渡金属 (II) 与源自吡咯并嘧啶的三叉片基配合物的抗疟疾和抗氧化潜力的实验和计算评估","authors":"Abhay D. Bagul, Manish Kumar, Amer M. Alanazi, Aisha Tufail, Nasir Tufail, Digamber D. Gaikwad, Amit Dubey","doi":"10.1007/s10534-024-00636-8","DOIUrl":null,"url":null,"abstract":"<p>In the twenty-first century, we are experiencing persistent waves of diverse pathogen variations, contributing significantly to global illness and death rates. Within this varied spectrum of illnesses, malaria and oxidative damage emerge as prominent obstacles that have persistently affected human health. The motivation for exploring the antioxidant potential of transition metal (II) complexes with tridentate Schiff base ligands is driven by the need for effective treatments against malaria and oxidative stress-related conditions. Both malaria and oxidative damage are significant global health concerns. Transition metal complexes can potentially offer enhanced anti-malarial and antioxidant activities, providing a dual benefit. To explore the aforementioned facts and examine the therapeutic potential, the previously synthesized pyrrolopyrimidinehydrazide-3-chlorobenzaldehyde, such as HPPHmCB ligand(1)andtheirMn(II),Fe(II),Co(II),Ni(II), Pd(II),Cu(II),Zn(II),Cd(II),Hg(II)complexes(2–10) of benzaldehydes and pyrrolopyrimidinehydrazide were proposed for in vitro anti-malarial and antioxidant investigation. These compounds were assessed for their anti-malarial efficacy against <i>Plasmodium falciparum</i> using a micro assay protocol, with IC<sub>50</sub> values indicating the concentration required to inhibit parasite maturation by 50%. The Hg(II) complex displays pronounced antimalarial activity with an IC<sub>50</sub> value of 1.98 ± 0.08 µM, closely aligning with the efficacy of quinine, whereas Zn(II), Cu(II), Pd(II) complexes demonstrates most significant anti-malarial activity, with IC<sub>50</sub> values close to the reference compound quinine. The antioxidant activity of the compounds was evaluated using the DPPH assay, with several metal complexes such as Cu(II)and Zn(II) showing strong potential in neutralizing oxidative stress. Furthermore, molecular docking simulations were conducted to explore the binding interactions of the compounds with PfNDH2, providing insights into their pharmacological potential. The study also examined the electronic properties, solubility, and potential hepatotoxicity of the compounds. The findings suggest that the metal complexes could be promising candidates for further development as anti-malarial agents, offering enhanced potency compared to the base compound.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"16 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and computational evaluation of anti-malarial and antioxidant potential of transition metal (II) complexes with tridentate schiff base derived from pyrrolopyrimidine\",\"authors\":\"Abhay D. Bagul, Manish Kumar, Amer M. Alanazi, Aisha Tufail, Nasir Tufail, Digamber D. Gaikwad, Amit Dubey\",\"doi\":\"10.1007/s10534-024-00636-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the twenty-first century, we are experiencing persistent waves of diverse pathogen variations, contributing significantly to global illness and death rates. Within this varied spectrum of illnesses, malaria and oxidative damage emerge as prominent obstacles that have persistently affected human health. The motivation for exploring the antioxidant potential of transition metal (II) complexes with tridentate Schiff base ligands is driven by the need for effective treatments against malaria and oxidative stress-related conditions. Both malaria and oxidative damage are significant global health concerns. Transition metal complexes can potentially offer enhanced anti-malarial and antioxidant activities, providing a dual benefit. To explore the aforementioned facts and examine the therapeutic potential, the previously synthesized pyrrolopyrimidinehydrazide-3-chlorobenzaldehyde, such as HPPHmCB ligand(1)andtheirMn(II),Fe(II),Co(II),Ni(II), Pd(II),Cu(II),Zn(II),Cd(II),Hg(II)complexes(2–10) of benzaldehydes and pyrrolopyrimidinehydrazide were proposed for in vitro anti-malarial and antioxidant investigation. These compounds were assessed for their anti-malarial efficacy against <i>Plasmodium falciparum</i> using a micro assay protocol, with IC<sub>50</sub> values indicating the concentration required to inhibit parasite maturation by 50%. The Hg(II) complex displays pronounced antimalarial activity with an IC<sub>50</sub> value of 1.98 ± 0.08 µM, closely aligning with the efficacy of quinine, whereas Zn(II), Cu(II), Pd(II) complexes demonstrates most significant anti-malarial activity, with IC<sub>50</sub> values close to the reference compound quinine. The antioxidant activity of the compounds was evaluated using the DPPH assay, with several metal complexes such as Cu(II)and Zn(II) showing strong potential in neutralizing oxidative stress. Furthermore, molecular docking simulations were conducted to explore the binding interactions of the compounds with PfNDH2, providing insights into their pharmacological potential. The study also examined the electronic properties, solubility, and potential hepatotoxicity of the compounds. The findings suggest that the metal complexes could be promising candidates for further development as anti-malarial agents, offering enhanced potency compared to the base compound.</p>\",\"PeriodicalId\":491,\"journal\":{\"name\":\"Biometals\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometals\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10534-024-00636-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-024-00636-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Experimental and computational evaluation of anti-malarial and antioxidant potential of transition metal (II) complexes with tridentate schiff base derived from pyrrolopyrimidine
In the twenty-first century, we are experiencing persistent waves of diverse pathogen variations, contributing significantly to global illness and death rates. Within this varied spectrum of illnesses, malaria and oxidative damage emerge as prominent obstacles that have persistently affected human health. The motivation for exploring the antioxidant potential of transition metal (II) complexes with tridentate Schiff base ligands is driven by the need for effective treatments against malaria and oxidative stress-related conditions. Both malaria and oxidative damage are significant global health concerns. Transition metal complexes can potentially offer enhanced anti-malarial and antioxidant activities, providing a dual benefit. To explore the aforementioned facts and examine the therapeutic potential, the previously synthesized pyrrolopyrimidinehydrazide-3-chlorobenzaldehyde, such as HPPHmCB ligand(1)andtheirMn(II),Fe(II),Co(II),Ni(II), Pd(II),Cu(II),Zn(II),Cd(II),Hg(II)complexes(2–10) of benzaldehydes and pyrrolopyrimidinehydrazide were proposed for in vitro anti-malarial and antioxidant investigation. These compounds were assessed for their anti-malarial efficacy against Plasmodium falciparum using a micro assay protocol, with IC50 values indicating the concentration required to inhibit parasite maturation by 50%. The Hg(II) complex displays pronounced antimalarial activity with an IC50 value of 1.98 ± 0.08 µM, closely aligning with the efficacy of quinine, whereas Zn(II), Cu(II), Pd(II) complexes demonstrates most significant anti-malarial activity, with IC50 values close to the reference compound quinine. The antioxidant activity of the compounds was evaluated using the DPPH assay, with several metal complexes such as Cu(II)and Zn(II) showing strong potential in neutralizing oxidative stress. Furthermore, molecular docking simulations were conducted to explore the binding interactions of the compounds with PfNDH2, providing insights into their pharmacological potential. The study also examined the electronic properties, solubility, and potential hepatotoxicity of the compounds. The findings suggest that the metal complexes could be promising candidates for further development as anti-malarial agents, offering enhanced potency compared to the base compound.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.