{"title":"在数字/非 WSI 图像上检测结直肠癌淋巴结转移沉积物的模型","authors":"Talat Zehra, Sarosh Moeen, Mahin Shams, Muhammad Raza, Amna Khurshid, Asad Jafri, Jamshid Abdul-Ghafar","doi":"10.1186/s13000-024-01547-5","DOIUrl":null,"url":null,"abstract":"Colorectal cancer (CRC) constitutes around 10% of global cancer diagnoses and death due to cancer. Treatment involves the surgical resection of the tumor and regional lymph nodes. Assessment of multiple lymph node demands meticulous examination by skilled pathologists, which can be arduous, prompting consideration for an artificial intelligence (AI)-supported workflow due to the growing number of slides to be examined, demanding heightened precision and the global shortage of pathologists. This was a retrospective cross-sectional study including digital images of glass slides containing sections of positive and negative lymph nodes obtained from radical resection of primary CRC. Lymph nodes from 165 previously diagnosed cases were selected from Agha Khan University Hospital, from Jan 2021 to Jan 2022. The images were prepared at 10X and uploaded into an open source software, Q path and deep learning model Ensemble was applied for the identification of tumor deposits in lymph node. Out of the 87 positive lymph nodes detected by AI, 73(84%) were true positive and 14(16%) were false positive. The total number of negative lymph nodes detected by AI was 78. Out of these, 69(88.5%) were true negative and 9 (11.5%) were false negative. The sensitivity was 89% and specificity 83.1%. The odds ratio was 40 with a confidence interval of 16.26–98.3. P-value was < 0.05 (< 0.0001). Though it was a small study but its results were really appreciating and we encourage more such studies with big sample data in future.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model for detecting metastatic deposits in lymph nodes of colorectal carcinoma on digital/ non-WSI images\",\"authors\":\"Talat Zehra, Sarosh Moeen, Mahin Shams, Muhammad Raza, Amna Khurshid, Asad Jafri, Jamshid Abdul-Ghafar\",\"doi\":\"10.1186/s13000-024-01547-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Colorectal cancer (CRC) constitutes around 10% of global cancer diagnoses and death due to cancer. Treatment involves the surgical resection of the tumor and regional lymph nodes. Assessment of multiple lymph node demands meticulous examination by skilled pathologists, which can be arduous, prompting consideration for an artificial intelligence (AI)-supported workflow due to the growing number of slides to be examined, demanding heightened precision and the global shortage of pathologists. This was a retrospective cross-sectional study including digital images of glass slides containing sections of positive and negative lymph nodes obtained from radical resection of primary CRC. Lymph nodes from 165 previously diagnosed cases were selected from Agha Khan University Hospital, from Jan 2021 to Jan 2022. The images were prepared at 10X and uploaded into an open source software, Q path and deep learning model Ensemble was applied for the identification of tumor deposits in lymph node. Out of the 87 positive lymph nodes detected by AI, 73(84%) were true positive and 14(16%) were false positive. The total number of negative lymph nodes detected by AI was 78. Out of these, 69(88.5%) were true negative and 9 (11.5%) were false negative. The sensitivity was 89% and specificity 83.1%. The odds ratio was 40 with a confidence interval of 16.26–98.3. P-value was < 0.05 (< 0.0001). Though it was a small study but its results were really appreciating and we encourage more such studies with big sample data in future.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13000-024-01547-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13000-024-01547-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Model for detecting metastatic deposits in lymph nodes of colorectal carcinoma on digital/ non-WSI images
Colorectal cancer (CRC) constitutes around 10% of global cancer diagnoses and death due to cancer. Treatment involves the surgical resection of the tumor and regional lymph nodes. Assessment of multiple lymph node demands meticulous examination by skilled pathologists, which can be arduous, prompting consideration for an artificial intelligence (AI)-supported workflow due to the growing number of slides to be examined, demanding heightened precision and the global shortage of pathologists. This was a retrospective cross-sectional study including digital images of glass slides containing sections of positive and negative lymph nodes obtained from radical resection of primary CRC. Lymph nodes from 165 previously diagnosed cases were selected from Agha Khan University Hospital, from Jan 2021 to Jan 2022. The images were prepared at 10X and uploaded into an open source software, Q path and deep learning model Ensemble was applied for the identification of tumor deposits in lymph node. Out of the 87 positive lymph nodes detected by AI, 73(84%) were true positive and 14(16%) were false positive. The total number of negative lymph nodes detected by AI was 78. Out of these, 69(88.5%) were true negative and 9 (11.5%) were false negative. The sensitivity was 89% and specificity 83.1%. The odds ratio was 40 with a confidence interval of 16.26–98.3. P-value was < 0.05 (< 0.0001). Though it was a small study but its results were really appreciating and we encourage more such studies with big sample data in future.