人工智能生成的小型活页夹改善了素材编辑工作

Ju-Chan Park, Heesoo Uhm, Yong-Woo Kim, Ye Eun Oh, Sangsu Bae
{"title":"人工智能生成的小型活页夹改善了素材编辑工作","authors":"Ju-Chan Park, Heesoo Uhm, Yong-Woo Kim, Ye Eun Oh, Sangsu Bae","doi":"10.1101/2024.09.11.612443","DOIUrl":null,"url":null,"abstract":"The prime editing 2 (PE2) system comprises a nickase Cas9 fused to a reverse transcriptase utilizing a prime editing guide RNA (pegRNA) to introduce desired mutations at target genomic sites. However, the PE efficiency is limited by mismatch repair (MMR) that excises the DNA strand containing desired edits. Thus, inhibiting key components of MMR complex through transient expression of a dominant negative MLH1 (MLH1dn) exhibited approximately 7.7-fold increase in PE efficiency over PE2, generating PE4. Herein, by utilizing a generative artificial intelligence (AI) technologies, RFdiffusion and AlphaFold 3, we ultimately generated a de novo MLH1 small binder (named MLH1-SB), which bind to the dimeric interface of MLH1 and PMS2 to disrupt the formation of key MMR components. MLH1-SB's small size (82 amino acids) allowed it to be integrated into pre-existing PE architectures via the 2A system, creating a novel PE-SB platform. Resultantly, by incorporating MLH1-SB into PE7, we have developed an improved PE architecture called PE7-SB, which demonstrates the highest PE efficiency to date (29.4-fold over PE2 and 2.4-fold over PE7 in HeLa cells), providing an insight that generative AI technologies will boost up the improvement of genome editing tools.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-generated small binder improves prime editing\",\"authors\":\"Ju-Chan Park, Heesoo Uhm, Yong-Woo Kim, Ye Eun Oh, Sangsu Bae\",\"doi\":\"10.1101/2024.09.11.612443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prime editing 2 (PE2) system comprises a nickase Cas9 fused to a reverse transcriptase utilizing a prime editing guide RNA (pegRNA) to introduce desired mutations at target genomic sites. However, the PE efficiency is limited by mismatch repair (MMR) that excises the DNA strand containing desired edits. Thus, inhibiting key components of MMR complex through transient expression of a dominant negative MLH1 (MLH1dn) exhibited approximately 7.7-fold increase in PE efficiency over PE2, generating PE4. Herein, by utilizing a generative artificial intelligence (AI) technologies, RFdiffusion and AlphaFold 3, we ultimately generated a de novo MLH1 small binder (named MLH1-SB), which bind to the dimeric interface of MLH1 and PMS2 to disrupt the formation of key MMR components. MLH1-SB's small size (82 amino acids) allowed it to be integrated into pre-existing PE architectures via the 2A system, creating a novel PE-SB platform. Resultantly, by incorporating MLH1-SB into PE7, we have developed an improved PE architecture called PE7-SB, which demonstrates the highest PE efficiency to date (29.4-fold over PE2 and 2.4-fold over PE7 in HeLa cells), providing an insight that generative AI technologies will boost up the improvement of genome editing tools.\",\"PeriodicalId\":501308,\"journal\":{\"name\":\"bioRxiv - Bioengineering\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.11.612443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.11.612443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

质粒编辑 2(PE2)系统包括与反转录酶融合的切酶 Cas9,利用质粒编辑引导 RNA(pegRNA)在目标基因组位点引入所需的突变。然而,PE 的效率受到错配修复(MMR)的限制,MMR 会切除含有所需编辑的 DNA 链。因此,通过瞬时表达显性阴性 MLH1(MLH1dn)来抑制 MMR 复合物的关键成分,PE 的效率比 PE2 提高了约 7.7 倍,从而产生了 PE4。在这里,我们利用生成性人工智能(AI)技术、RFdiffusion和AlphaFold 3,最终生成了一种全新的MLH1小粘合剂(命名为MLH1-SB),它能与MLH1和PMS2的二聚体界面结合,破坏MMR关键组分的形成。MLH1-SB 体积小(82 个氨基酸),可通过 2A 系统将其整合到已有的聚乙烯架构中,从而创建一个新颖的聚乙烯-SB 平台。因此,通过将 MLH1-SB 整合到 PE7 中,我们开发出了一种名为 PE7-SB 的改进型 PE 架构,它展现出了迄今为止最高的 PE 效率(在 HeLa 细胞中比 PE2 高出 29.4 倍,比 PE7 高出 2.4 倍),为生成式人工智能技术将促进基因组编辑工具的改进提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI-generated small binder improves prime editing
The prime editing 2 (PE2) system comprises a nickase Cas9 fused to a reverse transcriptase utilizing a prime editing guide RNA (pegRNA) to introduce desired mutations at target genomic sites. However, the PE efficiency is limited by mismatch repair (MMR) that excises the DNA strand containing desired edits. Thus, inhibiting key components of MMR complex through transient expression of a dominant negative MLH1 (MLH1dn) exhibited approximately 7.7-fold increase in PE efficiency over PE2, generating PE4. Herein, by utilizing a generative artificial intelligence (AI) technologies, RFdiffusion and AlphaFold 3, we ultimately generated a de novo MLH1 small binder (named MLH1-SB), which bind to the dimeric interface of MLH1 and PMS2 to disrupt the formation of key MMR components. MLH1-SB's small size (82 amino acids) allowed it to be integrated into pre-existing PE architectures via the 2A system, creating a novel PE-SB platform. Resultantly, by incorporating MLH1-SB into PE7, we have developed an improved PE architecture called PE7-SB, which demonstrates the highest PE efficiency to date (29.4-fold over PE2 and 2.4-fold over PE7 in HeLa cells), providing an insight that generative AI technologies will boost up the improvement of genome editing tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single unit electrophysiology recordings and computational modeling can predict octopus arm movement PiggyBac mediated transgenesis and CRISPR/Cas9 knockout in the greater waxmoth, Galleria mellonella A microinjection protocol for the greater waxworm moth, Galleria mellonella Engineered Receptors for Soluble Cell-to-Cell Communication Synthesis and mechanical characterization of polyacrylamide (PAAm) hydrogels with different stiffnesses for large-batch cell culture applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1