Jiyun Park, Smruti Ranjan Dash, Seow Wah How, Di Wu, Jeonghwan Kim
{"title":"用于碳中和、分散式灰水处理的厌氧流化床膜生物反应器与多通道生物载体","authors":"Jiyun Park, Smruti Ranjan Dash, Seow Wah How, Di Wu, Jeonghwan Kim","doi":"10.1021/acsestengg.4c00186","DOIUrl":null,"url":null,"abstract":"This study investigated the effect of hydraulic retention times (HRTs) on the organic removal efficiency, membrane fouling, and methane production rate from an anaerobic fluidized bed membrane bioreactor (AFMBR) to treat synthetic greywater with a soluble chemical oxygen demand (SCOD) of 300 mg/L. Here, a polyvinylidene fluoride (PVDF)-based biocarrier was applied to control membrane fouling and facilitate attached biofilm growth. At an HRT of 16 h, which corresponds to 3.75 L/m<sup>2</sup> h of permeate flux, transmembrane pressure was maintained as 0.15 bar. As the HRT decreased 12 h, the SCOD removal efficiency dropped 42% quickly while bulk volatile suspended solid (VSS) concentration increased 1300 mg/L. However, when the HRT was further reduced to 8 h, the SCOD removal stabilized at 81% gradually with reducing the bulk VSS to 300 mg/L. During the entire operational period, the biogas produced by AFMBR under the fluidization of multichanneled media consisted of 50% methane. The methane yield was 0.13 L of CH<sub>4</sub>/day at an HRT of 8 h. A 16S ribosomal ribonucleic acid analysis of the microbial community demonstrated that the relative abundance of Methanosaeta grown on the PVDF media increased as the HRT decreased. Spectroscopic observation revealed that a significant portion of biomass was grown inside media channels having higher surface roughness than their outer surfaces.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"18 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anaerobic Fluidized Bed Membrane Bioreactor with Multichanneled Biocarrier for Carbon-Neutral, Decentralized Greywater Treatment\",\"authors\":\"Jiyun Park, Smruti Ranjan Dash, Seow Wah How, Di Wu, Jeonghwan Kim\",\"doi\":\"10.1021/acsestengg.4c00186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the effect of hydraulic retention times (HRTs) on the organic removal efficiency, membrane fouling, and methane production rate from an anaerobic fluidized bed membrane bioreactor (AFMBR) to treat synthetic greywater with a soluble chemical oxygen demand (SCOD) of 300 mg/L. Here, a polyvinylidene fluoride (PVDF)-based biocarrier was applied to control membrane fouling and facilitate attached biofilm growth. At an HRT of 16 h, which corresponds to 3.75 L/m<sup>2</sup> h of permeate flux, transmembrane pressure was maintained as 0.15 bar. As the HRT decreased 12 h, the SCOD removal efficiency dropped 42% quickly while bulk volatile suspended solid (VSS) concentration increased 1300 mg/L. However, when the HRT was further reduced to 8 h, the SCOD removal stabilized at 81% gradually with reducing the bulk VSS to 300 mg/L. During the entire operational period, the biogas produced by AFMBR under the fluidization of multichanneled media consisted of 50% methane. The methane yield was 0.13 L of CH<sub>4</sub>/day at an HRT of 8 h. A 16S ribosomal ribonucleic acid analysis of the microbial community demonstrated that the relative abundance of Methanosaeta grown on the PVDF media increased as the HRT decreased. Spectroscopic observation revealed that a significant portion of biomass was grown inside media channels having higher surface roughness than their outer surfaces.\",\"PeriodicalId\":7008,\"journal\":{\"name\":\"ACS ES&T engineering\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsestengg.4c00186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsestengg.4c00186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Anaerobic Fluidized Bed Membrane Bioreactor with Multichanneled Biocarrier for Carbon-Neutral, Decentralized Greywater Treatment
This study investigated the effect of hydraulic retention times (HRTs) on the organic removal efficiency, membrane fouling, and methane production rate from an anaerobic fluidized bed membrane bioreactor (AFMBR) to treat synthetic greywater with a soluble chemical oxygen demand (SCOD) of 300 mg/L. Here, a polyvinylidene fluoride (PVDF)-based biocarrier was applied to control membrane fouling and facilitate attached biofilm growth. At an HRT of 16 h, which corresponds to 3.75 L/m2 h of permeate flux, transmembrane pressure was maintained as 0.15 bar. As the HRT decreased 12 h, the SCOD removal efficiency dropped 42% quickly while bulk volatile suspended solid (VSS) concentration increased 1300 mg/L. However, when the HRT was further reduced to 8 h, the SCOD removal stabilized at 81% gradually with reducing the bulk VSS to 300 mg/L. During the entire operational period, the biogas produced by AFMBR under the fluidization of multichanneled media consisted of 50% methane. The methane yield was 0.13 L of CH4/day at an HRT of 8 h. A 16S ribosomal ribonucleic acid analysis of the microbial community demonstrated that the relative abundance of Methanosaeta grown on the PVDF media increased as the HRT decreased. Spectroscopic observation revealed that a significant portion of biomass was grown inside media channels having higher surface roughness than their outer surfaces.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.