Fatemeh Gholizadeh, Sylva Prerostová, Magda Pál, Kinga Benczúr, Kamirán Á. Hamow, Imre Majláth, József Kun, Attila Gyenesei, Péter Urbán, Gabriella Szalai, Radomíra Vanková, Tibor Janda
{"title":"阐明水稻植物从芽到根的光和温度依赖性信号通路对胁迫响应的影响","authors":"Fatemeh Gholizadeh, Sylva Prerostová, Magda Pál, Kinga Benczúr, Kamirán Á. Hamow, Imre Majláth, József Kun, Attila Gyenesei, Péter Urbán, Gabriella Szalai, Radomíra Vanková, Tibor Janda","doi":"10.1111/ppl.14541","DOIUrl":null,"url":null,"abstract":"The main aim of this work was to better understand how the low temperature signal from the leaves may affect the stress responses in the roots, and how the light conditions modify certain stress acclimation processes in rice plants. Rice plants grown at 27°C were exposed to low temperatures (12°C) with different light intensities, and in the case of some groups of plants, only the leaves received the cold, while the roots remained at control temperature. RNA sequencing focusing on the roots of plants grown under normal growth light conditions found 525 differentially expressed genes in different comparisons. Exposure to low temperature led to more down‐regulated than up‐regulated genes. Comparison between roots of the leaf‐stressed plants and whole cold‐treated or control plants revealed that nitrogen metabolism and nitric oxide‐related signalling, as well as the phenylpropanoid‐related processes, were specifically affected. Real‐time PCR results focusing on the <jats:italic>COLD1</jats:italic> and polyamine oxidase genes, as well as metabolomics targeting hormonal changes and phenolic compounds also showed that not only cold exposure of the leaves, either alone or together with the roots, but also the light conditions may influence certain stress responses in the roots of rice plants.","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"21 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating light and temperature‐dependent signalling pathways from shoot to root in rice plants: Implications for stress responses\",\"authors\":\"Fatemeh Gholizadeh, Sylva Prerostová, Magda Pál, Kinga Benczúr, Kamirán Á. Hamow, Imre Majláth, József Kun, Attila Gyenesei, Péter Urbán, Gabriella Szalai, Radomíra Vanková, Tibor Janda\",\"doi\":\"10.1111/ppl.14541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of this work was to better understand how the low temperature signal from the leaves may affect the stress responses in the roots, and how the light conditions modify certain stress acclimation processes in rice plants. Rice plants grown at 27°C were exposed to low temperatures (12°C) with different light intensities, and in the case of some groups of plants, only the leaves received the cold, while the roots remained at control temperature. RNA sequencing focusing on the roots of plants grown under normal growth light conditions found 525 differentially expressed genes in different comparisons. Exposure to low temperature led to more down‐regulated than up‐regulated genes. Comparison between roots of the leaf‐stressed plants and whole cold‐treated or control plants revealed that nitrogen metabolism and nitric oxide‐related signalling, as well as the phenylpropanoid‐related processes, were specifically affected. Real‐time PCR results focusing on the <jats:italic>COLD1</jats:italic> and polyamine oxidase genes, as well as metabolomics targeting hormonal changes and phenolic compounds also showed that not only cold exposure of the leaves, either alone or together with the roots, but also the light conditions may influence certain stress responses in the roots of rice plants.\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.14541\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14541","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Elucidating light and temperature‐dependent signalling pathways from shoot to root in rice plants: Implications for stress responses
The main aim of this work was to better understand how the low temperature signal from the leaves may affect the stress responses in the roots, and how the light conditions modify certain stress acclimation processes in rice plants. Rice plants grown at 27°C were exposed to low temperatures (12°C) with different light intensities, and in the case of some groups of plants, only the leaves received the cold, while the roots remained at control temperature. RNA sequencing focusing on the roots of plants grown under normal growth light conditions found 525 differentially expressed genes in different comparisons. Exposure to low temperature led to more down‐regulated than up‐regulated genes. Comparison between roots of the leaf‐stressed plants and whole cold‐treated or control plants revealed that nitrogen metabolism and nitric oxide‐related signalling, as well as the phenylpropanoid‐related processes, were specifically affected. Real‐time PCR results focusing on the COLD1 and polyamine oxidase genes, as well as metabolomics targeting hormonal changes and phenolic compounds also showed that not only cold exposure of the leaves, either alone or together with the roots, but also the light conditions may influence certain stress responses in the roots of rice plants.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.