Angie C. Forero-Girón, Soledad Gutiérrez-Oliva, Camilo López-Alarcón, Barbara Herrera, Margarita E. Aliaga
{"title":"偶氮化合物与葫芦[7]脲的超分子复合物的计算研究:对自由基的产生和释放的影响","authors":"Angie C. Forero-Girón, Soledad Gutiérrez-Oliva, Camilo López-Alarcón, Barbara Herrera, Margarita E. Aliaga","doi":"10.1007/s00894-024-06132-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>An inclusion complex between 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH), a widely employed azocompound, and cucurbit[7]util (CB[7]), has shown an increased yield of radicals derived from the homolytic cleavage of the azo bond. Aimed to get insights about the formation of complexes and their effect on the yield of radicals production, complexes of CB[7] with seven azocompounds were studied by computational methods. Molecular electrostatic surfaces and structural analysis showed that the inclusion of symmetrical azocompounds inside of CB[7] depends mainly on the charge density and position of the functional groups at the main chain of the azoderivative. Analysis of non-covalent interactions and thermodynamic outcomes revealed that positively charged azocompounds with amidinium or imidazolium groups presented strong favorable interactions (multiple hydrogen bonds) with the oxygens of CB[7] portals. Additionally, carbon-centered radicals generated from the complexes (azocompounds@CB[7]) were corroborated using the electron localization function (ELF). Results evidenced that the strength of the interactions and the level of inclusion (partial or complete) between the azocompound and CB[7] determined the final orientation of the radicals (located out- or inside of the CB[7] cavity). Obtained results could be employed to design new supramolecular systems based on the properties of azocomplound@CB[7] complexes for new scientific or industrial applications.</p><h3>Methods</h3><p>First-principles calculations at B3LYP-D3BJ/6-311g(d,p) level theory in the gas phase and in solvent (PCM, water) were performed in Gaussian 16 software package. The dispersion energy correction was included through the Grimme’s dispersion with Becke-Johnson damping D3(BJ). Thermodynamical data and the minimum character of all structures were obtained from vibrational frequency calculations. NBO, Multiwfn, Chemcraft, and NCIPLOT software were used to perform population analysis, analyze outcomes, visualize data, and display non-covalent interactions respectively.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational study of the supramolecular complexation of azocompounds with cucurbit[7]uril: effects on the production and release of free radicals\",\"authors\":\"Angie C. Forero-Girón, Soledad Gutiérrez-Oliva, Camilo López-Alarcón, Barbara Herrera, Margarita E. Aliaga\",\"doi\":\"10.1007/s00894-024-06132-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>An inclusion complex between 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH), a widely employed azocompound, and cucurbit[7]util (CB[7]), has shown an increased yield of radicals derived from the homolytic cleavage of the azo bond. Aimed to get insights about the formation of complexes and their effect on the yield of radicals production, complexes of CB[7] with seven azocompounds were studied by computational methods. Molecular electrostatic surfaces and structural analysis showed that the inclusion of symmetrical azocompounds inside of CB[7] depends mainly on the charge density and position of the functional groups at the main chain of the azoderivative. Analysis of non-covalent interactions and thermodynamic outcomes revealed that positively charged azocompounds with amidinium or imidazolium groups presented strong favorable interactions (multiple hydrogen bonds) with the oxygens of CB[7] portals. Additionally, carbon-centered radicals generated from the complexes (azocompounds@CB[7]) were corroborated using the electron localization function (ELF). Results evidenced that the strength of the interactions and the level of inclusion (partial or complete) between the azocompound and CB[7] determined the final orientation of the radicals (located out- or inside of the CB[7] cavity). Obtained results could be employed to design new supramolecular systems based on the properties of azocomplound@CB[7] complexes for new scientific or industrial applications.</p><h3>Methods</h3><p>First-principles calculations at B3LYP-D3BJ/6-311g(d,p) level theory in the gas phase and in solvent (PCM, water) were performed in Gaussian 16 software package. The dispersion energy correction was included through the Grimme’s dispersion with Becke-Johnson damping D3(BJ). Thermodynamical data and the minimum character of all structures were obtained from vibrational frequency calculations. NBO, Multiwfn, Chemcraft, and NCIPLOT software were used to perform population analysis, analyze outcomes, visualize data, and display non-covalent interactions respectively.</p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06132-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06132-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Computational study of the supramolecular complexation of azocompounds with cucurbit[7]uril: effects on the production and release of free radicals
Context
An inclusion complex between 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH), a widely employed azocompound, and cucurbit[7]util (CB[7]), has shown an increased yield of radicals derived from the homolytic cleavage of the azo bond. Aimed to get insights about the formation of complexes and their effect on the yield of radicals production, complexes of CB[7] with seven azocompounds were studied by computational methods. Molecular electrostatic surfaces and structural analysis showed that the inclusion of symmetrical azocompounds inside of CB[7] depends mainly on the charge density and position of the functional groups at the main chain of the azoderivative. Analysis of non-covalent interactions and thermodynamic outcomes revealed that positively charged azocompounds with amidinium or imidazolium groups presented strong favorable interactions (multiple hydrogen bonds) with the oxygens of CB[7] portals. Additionally, carbon-centered radicals generated from the complexes (azocompounds@CB[7]) were corroborated using the electron localization function (ELF). Results evidenced that the strength of the interactions and the level of inclusion (partial or complete) between the azocompound and CB[7] determined the final orientation of the radicals (located out- or inside of the CB[7] cavity). Obtained results could be employed to design new supramolecular systems based on the properties of azocomplound@CB[7] complexes for new scientific or industrial applications.
Methods
First-principles calculations at B3LYP-D3BJ/6-311g(d,p) level theory in the gas phase and in solvent (PCM, water) were performed in Gaussian 16 software package. The dispersion energy correction was included through the Grimme’s dispersion with Becke-Johnson damping D3(BJ). Thermodynamical data and the minimum character of all structures were obtained from vibrational frequency calculations. NBO, Multiwfn, Chemcraft, and NCIPLOT software were used to perform population analysis, analyze outcomes, visualize data, and display non-covalent interactions respectively.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.