时变拓扑动态网络的同步拓扑估计与同步

Nana Wang, Esteban Restrepo, Dimos V. Dimarogonas
{"title":"时变拓扑动态网络的同步拓扑估计与同步","authors":"Nana Wang, Esteban Restrepo, Dimos V. Dimarogonas","doi":"arxiv-2409.08404","DOIUrl":null,"url":null,"abstract":"We propose an adaptive control strategy for the simultaneous estimation of\ntopology and synchronization in complex dynamical networks with unknown,\ntime-varying topology. Our approach transforms the problem of time-varying\ntopology estimation into a problem of estimating the time-varying weights of a\ncomplete graph, utilizing an edge-agreement framework. We introduce two\nauxiliary networks: one that satisfies the persistent excitation condition to\nfacilitate topology estimation, while the other, a uniform-$\\delta$\npersistently exciting network, ensures the boundedness of both weight\nestimation and synchronization errors, assuming bounded time-varying weights\nand their derivatives. A relevant numerical example shows the efficiency of our\nmethods.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Topology Estimation and Synchronization of Dynamical Networks with Time-varying Topology\",\"authors\":\"Nana Wang, Esteban Restrepo, Dimos V. Dimarogonas\",\"doi\":\"arxiv-2409.08404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an adaptive control strategy for the simultaneous estimation of\\ntopology and synchronization in complex dynamical networks with unknown,\\ntime-varying topology. Our approach transforms the problem of time-varying\\ntopology estimation into a problem of estimating the time-varying weights of a\\ncomplete graph, utilizing an edge-agreement framework. We introduce two\\nauxiliary networks: one that satisfies the persistent excitation condition to\\nfacilitate topology estimation, while the other, a uniform-$\\\\delta$\\npersistently exciting network, ensures the boundedness of both weight\\nestimation and synchronization errors, assuming bounded time-varying weights\\nand their derivatives. A relevant numerical example shows the efficiency of our\\nmethods.\",\"PeriodicalId\":501315,\"journal\":{\"name\":\"arXiv - CS - Multiagent Systems\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种自适应控制策略,用于在具有未知时变拓扑结构的复杂动态网络中同时估计拓扑结构和同步。我们的方法利用边缘协议框架,将时变拓扑估计问题转化为估计完整图的时变权重问题。我们引入了两个辅助网络:一个满足持续激励条件,以促进拓扑估计;另一个是均匀-$\delta$持续激励网络,确保权重估计和同步误差的有界性,假定时变权重及其导数是有界的。一个相关的数值示例显示了我们方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous Topology Estimation and Synchronization of Dynamical Networks with Time-varying Topology
We propose an adaptive control strategy for the simultaneous estimation of topology and synchronization in complex dynamical networks with unknown, time-varying topology. Our approach transforms the problem of time-varying topology estimation into a problem of estimating the time-varying weights of a complete graph, utilizing an edge-agreement framework. We introduce two auxiliary networks: one that satisfies the persistent excitation condition to facilitate topology estimation, while the other, a uniform-$\delta$ persistently exciting network, ensures the boundedness of both weight estimation and synchronization errors, assuming bounded time-varying weights and their derivatives. A relevant numerical example shows the efficiency of our methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1