人机协作中的相互心智理论:在实时共享工作区任务中使用 LLM 驱动的人工智能代理的实证研究

Shao Zhang, Xihuai Wang, Wenhao Zhang, Yongshan Chen, Landi Gao, Dakuo Wang, Weinan Zhang, Xinbing Wang, Ying Wen
{"title":"人机协作中的相互心智理论:在实时共享工作区任务中使用 LLM 驱动的人工智能代理的实证研究","authors":"Shao Zhang, Xihuai Wang, Wenhao Zhang, Yongshan Chen, Landi Gao, Dakuo Wang, Weinan Zhang, Xinbing Wang, Ying Wen","doi":"arxiv-2409.08811","DOIUrl":null,"url":null,"abstract":"Theory of Mind (ToM) significantly impacts human collaboration and\ncommunication as a crucial capability to understand others. When AI agents with\nToM capability collaborate with humans, Mutual Theory of Mind (MToM) arises in\nsuch human-AI teams (HATs). The MToM process, which involves interactive\ncommunication and ToM-based strategy adjustment, affects the team's performance\nand collaboration process. To explore the MToM process, we conducted a\nmixed-design experiment using a large language model-driven AI agent with ToM\nand communication modules in a real-time shared-workspace task. We find that\nthe agent's ToM capability does not significantly impact team performance but\nenhances human understanding of the agent and the feeling of being understood.\nMost participants in our study believe verbal communication increases human\nburden, and the results show that bidirectional communication leads to lower\nHAT performance. We discuss the results' implications for designing AI agents\nthat collaborate with humans in real-time shared workspace tasks.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task\",\"authors\":\"Shao Zhang, Xihuai Wang, Wenhao Zhang, Yongshan Chen, Landi Gao, Dakuo Wang, Weinan Zhang, Xinbing Wang, Ying Wen\",\"doi\":\"arxiv-2409.08811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theory of Mind (ToM) significantly impacts human collaboration and\\ncommunication as a crucial capability to understand others. When AI agents with\\nToM capability collaborate with humans, Mutual Theory of Mind (MToM) arises in\\nsuch human-AI teams (HATs). The MToM process, which involves interactive\\ncommunication and ToM-based strategy adjustment, affects the team's performance\\nand collaboration process. To explore the MToM process, we conducted a\\nmixed-design experiment using a large language model-driven AI agent with ToM\\nand communication modules in a real-time shared-workspace task. We find that\\nthe agent's ToM capability does not significantly impact team performance but\\nenhances human understanding of the agent and the feeling of being understood.\\nMost participants in our study believe verbal communication increases human\\nburden, and the results show that bidirectional communication leads to lower\\nHAT performance. We discuss the results' implications for designing AI agents\\nthat collaborate with humans in real-time shared workspace tasks.\",\"PeriodicalId\":501315,\"journal\":{\"name\":\"arXiv - CS - Multiagent Systems\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心智理论(ToM)作为一种理解他人的重要能力,对人类的合作与交流产生了重大影响。当具有ToM能力的人工智能代理与人类合作时,人类-人工智能团队(HATs)中就会出现相互心智理论(MToM)。相互心智理论过程涉及互动交流和基于心智理论的策略调整,会影响团队的表现和协作过程。为了探索MToM过程,我们在一个实时共享工作空间任务中使用一个带有ToM和通信模块的大型语言模型驱动人工智能代理进行了混合设计实验。我们发现,代理的ToM能力并不会对团队绩效产生显著影响,但会增强人类对代理的理解以及被理解的感觉。我们研究中的大多数参与者都认为语言交流会增加人类的负担,结果表明双向交流会导致较低的HAT绩效。我们讨论了这些结果对设计在实时共享工作空间任务中与人类协作的人工智能代理的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task
Theory of Mind (ToM) significantly impacts human collaboration and communication as a crucial capability to understand others. When AI agents with ToM capability collaborate with humans, Mutual Theory of Mind (MToM) arises in such human-AI teams (HATs). The MToM process, which involves interactive communication and ToM-based strategy adjustment, affects the team's performance and collaboration process. To explore the MToM process, we conducted a mixed-design experiment using a large language model-driven AI agent with ToM and communication modules in a real-time shared-workspace task. We find that the agent's ToM capability does not significantly impact team performance but enhances human understanding of the agent and the feeling of being understood. Most participants in our study believe verbal communication increases human burden, and the results show that bidirectional communication leads to lower HAT performance. We discuss the results' implications for designing AI agents that collaborate with humans in real-time shared workspace tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1