AIvril:通过环内验证实现人工智能驱动的 RTL 生成

Mubashir ul Islam, Humza Sami, Pierre-Emmanuel Gaillardon, Valerio Tenace
{"title":"AIvril:通过环内验证实现人工智能驱动的 RTL 生成","authors":"Mubashir ul Islam, Humza Sami, Pierre-Emmanuel Gaillardon, Valerio Tenace","doi":"arxiv-2409.11411","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) are computational models capable of performing\ncomplex natural language processing tasks. Leveraging these capabilities, LLMs\nhold the potential to transform the entire hardware design stack, with\npredictions suggesting that front-end and back-end tasks could be fully\nautomated in the near future. Currently, LLMs show great promise in\nstreamlining Register Transfer Level (RTL) generation, enhancing efficiency,\nand accelerating innovation. However, their probabilistic nature makes them\nprone to inaccuracies - a significant drawback in RTL design, where reliability\nand precision are essential. To address these challenges, this paper introduces AIvril, an advanced\nframework designed to enhance the accuracy and reliability of RTL-aware LLMs.\nAIvril employs a multi-agent, LLM-agnostic system for automatic syntax\ncorrection and functional verification, significantly reducing - and in many\ncases, completely eliminating - instances of erroneous code generation.\nExperimental results conducted on the VerilogEval-Human dataset show that our\nframework improves code quality by nearly 2x when compared to previous works,\nwhile achieving an 88.46% success rate in meeting verification objectives. This\nrepresents a critical step toward automating and optimizing hardware design\nworkflows, offering a more dependable methodology for AI-driven RTL design.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AIvril: AI-Driven RTL Generation With Verification In-The-Loop\",\"authors\":\"Mubashir ul Islam, Humza Sami, Pierre-Emmanuel Gaillardon, Valerio Tenace\",\"doi\":\"arxiv-2409.11411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large Language Models (LLMs) are computational models capable of performing\\ncomplex natural language processing tasks. Leveraging these capabilities, LLMs\\nhold the potential to transform the entire hardware design stack, with\\npredictions suggesting that front-end and back-end tasks could be fully\\nautomated in the near future. Currently, LLMs show great promise in\\nstreamlining Register Transfer Level (RTL) generation, enhancing efficiency,\\nand accelerating innovation. However, their probabilistic nature makes them\\nprone to inaccuracies - a significant drawback in RTL design, where reliability\\nand precision are essential. To address these challenges, this paper introduces AIvril, an advanced\\nframework designed to enhance the accuracy and reliability of RTL-aware LLMs.\\nAIvril employs a multi-agent, LLM-agnostic system for automatic syntax\\ncorrection and functional verification, significantly reducing - and in many\\ncases, completely eliminating - instances of erroneous code generation.\\nExperimental results conducted on the VerilogEval-Human dataset show that our\\nframework improves code quality by nearly 2x when compared to previous works,\\nwhile achieving an 88.46% success rate in meeting verification objectives. This\\nrepresents a critical step toward automating and optimizing hardware design\\nworkflows, offering a more dependable methodology for AI-driven RTL design.\",\"PeriodicalId\":501315,\"journal\":{\"name\":\"arXiv - CS - Multiagent Systems\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLM)是能够执行复杂自然语言处理任务的计算模型。利用这些能力,LLM 有可能改变整个硬件设计堆栈,据预测,在不久的将来,前端和后端任务可以完全自动化。目前,LLM 在简化寄存器传输层(RTL)生成、提高效率和加速创新方面大有可为。然而,LLM 的概率性质使其容易出现误差,这在 RTL 设计中是一个重大缺陷,因为可靠性和精确性对 RTL 设计至关重要。为了应对这些挑战,本文介绍了 AIvril,这是一个先进的框架,旨在提高 RTL 感知 LLM 的准确性和可靠性。AIvril 采用了一个多代理、LLM 识别系统,用于自动语法校正和功能验证,显著减少--在许多情况下甚至完全消除--错误代码生成的情况。在 VerilogEval-Human 数据集上进行的实验结果表明,与以前的工作相比,我们的框架将代码质量提高了近 2 倍,同时在实现验证目标方面达到了 88.46% 的成功率。这是向自动化和优化硬件设计工作流程迈出的关键一步,为人工智能驱动的 RTL 设计提供了更可靠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AIvril: AI-Driven RTL Generation With Verification In-The-Loop
Large Language Models (LLMs) are computational models capable of performing complex natural language processing tasks. Leveraging these capabilities, LLMs hold the potential to transform the entire hardware design stack, with predictions suggesting that front-end and back-end tasks could be fully automated in the near future. Currently, LLMs show great promise in streamlining Register Transfer Level (RTL) generation, enhancing efficiency, and accelerating innovation. However, their probabilistic nature makes them prone to inaccuracies - a significant drawback in RTL design, where reliability and precision are essential. To address these challenges, this paper introduces AIvril, an advanced framework designed to enhance the accuracy and reliability of RTL-aware LLMs. AIvril employs a multi-agent, LLM-agnostic system for automatic syntax correction and functional verification, significantly reducing - and in many cases, completely eliminating - instances of erroneous code generation. Experimental results conducted on the VerilogEval-Human dataset show that our framework improves code quality by nearly 2x when compared to previous works, while achieving an 88.46% success rate in meeting verification objectives. This represents a critical step toward automating and optimizing hardware design workflows, offering a more dependable methodology for AI-driven RTL design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1