连续环境中的多代理路径查找

Kristýna Janovská, Pavel Surynek
{"title":"连续环境中的多代理路径查找","authors":"Kristýna Janovská, Pavel Surynek","doi":"arxiv-2409.10680","DOIUrl":null,"url":null,"abstract":"We address a variant of multi-agent path finding in continuous environment\n(CE-MAPF), where agents move along sets of smooth curves. Collisions between\nagents are resolved via avoidance in the space domain. A new Continuous\nEnvironment Conflict-Based Search (CE-CBS) algorithm is proposed in this work.\nCE-CBS combines conflict-based search (CBS) for the high-level search framework\nwith RRT* for low-level path planning. The CE-CBS algorithm is tested under\nvarious settings on diverse CE-MAPF instances. Experimental results show that\nCE-CBS is competitive w.r.t. to other algorithms that consider continuous\naspect in MAPF such as MAPF with continuous time.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-agent Path Finding in Continuous Environment\",\"authors\":\"Kristýna Janovská, Pavel Surynek\",\"doi\":\"arxiv-2409.10680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address a variant of multi-agent path finding in continuous environment\\n(CE-MAPF), where agents move along sets of smooth curves. Collisions between\\nagents are resolved via avoidance in the space domain. A new Continuous\\nEnvironment Conflict-Based Search (CE-CBS) algorithm is proposed in this work.\\nCE-CBS combines conflict-based search (CBS) for the high-level search framework\\nwith RRT* for low-level path planning. The CE-CBS algorithm is tested under\\nvarious settings on diverse CE-MAPF instances. Experimental results show that\\nCE-CBS is competitive w.r.t. to other algorithms that consider continuous\\naspect in MAPF such as MAPF with continuous time.\",\"PeriodicalId\":501315,\"journal\":{\"name\":\"arXiv - CS - Multiagent Systems\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是连续环境中多代理路径搜索(CE-MAPF)的一种变体,其中代理沿着平滑曲线集移动。代理之间的碰撞通过空间域中的回避来解决。CE-CBS 结合了高层搜索框架的基于冲突的搜索(CBS)和底层路径规划的 RRT*。在不同的 CE-MAPF 实例上对 CE-CBS 算法进行了测试。实验结果表明,CE-CBS 与其他考虑 MAPF 连续性的算法(如连续时间 MAPF)相比,具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-agent Path Finding in Continuous Environment
We address a variant of multi-agent path finding in continuous environment (CE-MAPF), where agents move along sets of smooth curves. Collisions between agents are resolved via avoidance in the space domain. A new Continuous Environment Conflict-Based Search (CE-CBS) algorithm is proposed in this work. CE-CBS combines conflict-based search (CBS) for the high-level search framework with RRT* for low-level path planning. The CE-CBS algorithm is tested under various settings on diverse CE-MAPF instances. Experimental results show that CE-CBS is competitive w.r.t. to other algorithms that consider continuous aspect in MAPF such as MAPF with continuous time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1