基于 1D-CCNet 注意力机制的多模态社交媒体假新闻检测

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Electronics Pub Date : 2024-09-18 DOI:10.3390/electronics13183700
Yuhan Yan, Haiyan Fu, Fan Wu
{"title":"基于 1D-CCNet 注意力机制的多模态社交媒体假新闻检测","authors":"Yuhan Yan, Haiyan Fu, Fan Wu","doi":"10.3390/electronics13183700","DOIUrl":null,"url":null,"abstract":"Due to the explosive rise of multimodal content in online social communities, cross-modal learning is crucial for accurate fake news detection. However, current multimodal fake news detection techniques face challenges in extracting features from multiple modalities and fusing cross-modal information, failing to fully exploit the correlations and complementarities between different modalities. To address these issues, this paper proposes a fake news detection model based on a one-dimensional CCNet (1D-CCNet) attention mechanism, named BTCM. This method first utilizes BERT and BLIP-2 encoders to extract text and image features. Then, it employs the proposed 1D-CCNet attention mechanism module to process the input text and image sequences, enhancing the important aspects of the bimodal features. Meanwhile, this paper uses the pre-trained BLIP-2 model for object detection in images, generating image descriptions and augmenting text data to enhance the dataset. This operation aims to further strengthen the correlations between different modalities. Finally, this paper proposes a heterogeneous cross-feature fusion method (HCFFM) to integrate image and text features. Comparative experiments were conducted on three public datasets: Twitter, Weibo, and Gossipcop. The results show that the proposed model achieved excellent performance.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"25 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Social Media Fake News Detection Based on 1D-CCNet Attention Mechanism\",\"authors\":\"Yuhan Yan, Haiyan Fu, Fan Wu\",\"doi\":\"10.3390/electronics13183700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the explosive rise of multimodal content in online social communities, cross-modal learning is crucial for accurate fake news detection. However, current multimodal fake news detection techniques face challenges in extracting features from multiple modalities and fusing cross-modal information, failing to fully exploit the correlations and complementarities between different modalities. To address these issues, this paper proposes a fake news detection model based on a one-dimensional CCNet (1D-CCNet) attention mechanism, named BTCM. This method first utilizes BERT and BLIP-2 encoders to extract text and image features. Then, it employs the proposed 1D-CCNet attention mechanism module to process the input text and image sequences, enhancing the important aspects of the bimodal features. Meanwhile, this paper uses the pre-trained BLIP-2 model for object detection in images, generating image descriptions and augmenting text data to enhance the dataset. This operation aims to further strengthen the correlations between different modalities. Finally, this paper proposes a heterogeneous cross-feature fusion method (HCFFM) to integrate image and text features. Comparative experiments were conducted on three public datasets: Twitter, Weibo, and Gossipcop. The results show that the proposed model achieved excellent performance.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183700\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183700","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于网络社交社区中多模态内容的爆炸式增长,跨模态学习对于准确检测假新闻至关重要。然而,目前的多模态假新闻检测技术在提取多模态特征和融合跨模态信息方面面临挑战,无法充分利用不同模态之间的相关性和互补性。针对这些问题,本文提出了一种基于一维 CCNet(1D-CCNet)注意机制的假新闻检测模型,命名为 BTCM。该方法首先利用 BERT 和 BLIP-2 编码器提取文本和图像特征。然后,它采用所提出的一维 CCNet 注意机制模块来处理输入的文本和图像序列,从而增强双峰特征的重要方面。同时,本文使用预先训练好的 BLIP-2 模型来检测图像中的物体,生成图像描述并增强文本数据,从而增强数据集。这一操作旨在进一步加强不同模态之间的相关性。最后,本文提出了一种异构交叉特征融合方法(HCFFM)来整合图像和文本特征。本文在三个公共数据集上进行了对比实验:Twitter、微博和 Gossipcop。结果表明,所提出的模型取得了优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodal Social Media Fake News Detection Based on 1D-CCNet Attention Mechanism
Due to the explosive rise of multimodal content in online social communities, cross-modal learning is crucial for accurate fake news detection. However, current multimodal fake news detection techniques face challenges in extracting features from multiple modalities and fusing cross-modal information, failing to fully exploit the correlations and complementarities between different modalities. To address these issues, this paper proposes a fake news detection model based on a one-dimensional CCNet (1D-CCNet) attention mechanism, named BTCM. This method first utilizes BERT and BLIP-2 encoders to extract text and image features. Then, it employs the proposed 1D-CCNet attention mechanism module to process the input text and image sequences, enhancing the important aspects of the bimodal features. Meanwhile, this paper uses the pre-trained BLIP-2 model for object detection in images, generating image descriptions and augmenting text data to enhance the dataset. This operation aims to further strengthen the correlations between different modalities. Finally, this paper proposes a heterogeneous cross-feature fusion method (HCFFM) to integrate image and text features. Comparative experiments were conducted on three public datasets: Twitter, Weibo, and Gossipcop. The results show that the proposed model achieved excellent performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics
Electronics Computer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍: Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.
期刊最新文献
A Deep Reinforcement Learning Method Based on a Transformer Model for the Flexible Job Shop Scheduling Problem Performance Evaluation of UDP-Based Data Transmission with Acknowledgment for Various Network Topologies in IoT Environments Multimodal Social Media Fake News Detection Based on 1D-CCNet Attention Mechanism Real-Time Semantic Segmentation Algorithm for Street Scenes Based on Attention Mechanism and Feature Fusion Attention-Enhanced Guided Multimodal and Semi-Supervised Networks for Visual Acuity (VA) Prediction after Anti-VEGF Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1