基于分散式自主变电站概念,自下而上实现完全分散的自主电网

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Electronics Pub Date : 2024-09-17 DOI:10.3390/electronics13183683
Alain Aoun, Nadine Kashmar, Mehdi Adda, Hussein Ibrahim
{"title":"基于分散式自主变电站概念,自下而上实现完全分散的自主电网","authors":"Alain Aoun, Nadine Kashmar, Mehdi Adda, Hussein Ibrahim","doi":"10.3390/electronics13183683","DOIUrl":null,"url":null,"abstract":"The idea of a decentralized electric grid has shifted from being a concept to a reality. The growing integration of distributed energy resources (DERs) has transformed the traditional centralized electric grid into a decentralized one. However, while most efforts to manage and optimize this decentralization focus on the electrical infrastructure layer, the operational and control layer, as well as the data management layer, have received less attention. Current electric grids rely on centralized control centers (CCCs) that serve as the electric grid’s brain, where operators monitor, control, and manage the entire grid infrastructure. Hence, any disruption caused by a cyberattack or a natural event, disconnecting the CCC, could have numerous negative effects on grid operations, including socioeconomic impacts, equipment damage, market repercussions, and blackouts. This article introduces the idea of a fully decentralized electric grid that leverages autonomous smart substations and blockchain integration for decentralized data management and control. The aim is to propose a blockchain-enabled decentralized electric grid model and its potential impact on energy markets, sustainability, and resilience. The model presented underlines the transformative potential of decentralized autonomous grids in revolutionizing energy systems for better operability, management, and flexibility.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Bottom-Up Towards a Completely Decentralized Autonomous Electric Grid Based on the Concept of a Decentralized Autonomous Substation\",\"authors\":\"Alain Aoun, Nadine Kashmar, Mehdi Adda, Hussein Ibrahim\",\"doi\":\"10.3390/electronics13183683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The idea of a decentralized electric grid has shifted from being a concept to a reality. The growing integration of distributed energy resources (DERs) has transformed the traditional centralized electric grid into a decentralized one. However, while most efforts to manage and optimize this decentralization focus on the electrical infrastructure layer, the operational and control layer, as well as the data management layer, have received less attention. Current electric grids rely on centralized control centers (CCCs) that serve as the electric grid’s brain, where operators monitor, control, and manage the entire grid infrastructure. Hence, any disruption caused by a cyberattack or a natural event, disconnecting the CCC, could have numerous negative effects on grid operations, including socioeconomic impacts, equipment damage, market repercussions, and blackouts. This article introduces the idea of a fully decentralized electric grid that leverages autonomous smart substations and blockchain integration for decentralized data management and control. The aim is to propose a blockchain-enabled decentralized electric grid model and its potential impact on energy markets, sustainability, and resilience. The model presented underlines the transformative potential of decentralized autonomous grids in revolutionizing energy systems for better operability, management, and flexibility.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183683\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183683","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

分散式电网的理念已从概念变为现实。分布式能源资源(DERs)的日益集成已将传统的集中式电网转变为分散式电网。然而,虽然管理和优化这种分散式电网的大部分工作都集中在电力基础设施层,但运营和控制层以及数据管理层却较少受到关注。当前的电网依赖于作为电网大脑的集中控制中心 (CCC),操作员在这里监控、控制和管理整个电网基础设施。因此,任何由网络攻击或自然事件造成的断开 CCC 连接的破坏都会对电网运行产生许多负面影响,包括社会经济影响、设备损坏、市场反响和停电。本文介绍了利用自主智能变电站和区块链集成实现分散数据管理和控制的完全分散电网的理念。其目的是提出一种支持区块链的去中心化电网模式及其对能源市场、可持续性和复原力的潜在影响。所提出的模型强调了去中心化自主电网在彻底改变能源系统以提高可操作性、管理和灵活性方面的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From Bottom-Up Towards a Completely Decentralized Autonomous Electric Grid Based on the Concept of a Decentralized Autonomous Substation
The idea of a decentralized electric grid has shifted from being a concept to a reality. The growing integration of distributed energy resources (DERs) has transformed the traditional centralized electric grid into a decentralized one. However, while most efforts to manage and optimize this decentralization focus on the electrical infrastructure layer, the operational and control layer, as well as the data management layer, have received less attention. Current electric grids rely on centralized control centers (CCCs) that serve as the electric grid’s brain, where operators monitor, control, and manage the entire grid infrastructure. Hence, any disruption caused by a cyberattack or a natural event, disconnecting the CCC, could have numerous negative effects on grid operations, including socioeconomic impacts, equipment damage, market repercussions, and blackouts. This article introduces the idea of a fully decentralized electric grid that leverages autonomous smart substations and blockchain integration for decentralized data management and control. The aim is to propose a blockchain-enabled decentralized electric grid model and its potential impact on energy markets, sustainability, and resilience. The model presented underlines the transformative potential of decentralized autonomous grids in revolutionizing energy systems for better operability, management, and flexibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics
Electronics Computer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍: Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.
期刊最新文献
A Deep Reinforcement Learning Method Based on a Transformer Model for the Flexible Job Shop Scheduling Problem Performance Evaluation of UDP-Based Data Transmission with Acknowledgment for Various Network Topologies in IoT Environments Multimodal Social Media Fake News Detection Based on 1D-CCNet Attention Mechanism Real-Time Semantic Segmentation Algorithm for Street Scenes Based on Attention Mechanism and Feature Fusion Attention-Enhanced Guided Multimodal and Semi-Supervised Networks for Visual Acuity (VA) Prediction after Anti-VEGF Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1