Siying Zhao, Ruixin Huojia, Tian Tian, Xiaotong Liu, Haoqing Tang, Qiang Weng, Tao Liu
{"title":"通过 LiF 保护层引导锌的均匀沉积,实现高度可逆的锌阳极","authors":"Siying Zhao, Ruixin Huojia, Tian Tian, Xiaotong Liu, Haoqing Tang, Qiang Weng, Tao Liu","doi":"10.1016/j.mtener.2024.101674","DOIUrl":null,"url":null,"abstract":"Deep-seated issues such as ineluctable dendrite deposition and parasitic reaction of Zn anode pose a major obstacle to the commercialization of aqueous zinc ion batteries (AZIBs). Herein, we proposed LiF as a solid-electrolyte interphase for highly reversible Zn anode. Combining experimental analyses and theoretical simulation calculations, the electronegative fluorine atoms could provide uniform zincophilic nucleation sites to regulate Zn deposition behavior. Additionally, a ZnF layer with outstanding Zn conductive can be formed thus further shielding bulk water molecules and expediting the Zn transfer kinetics. Therefore, the LiF@Zn symmetric cells manifest long-cycling stability with 650 h at 1.0 mA/cm and 1.0 mAh/cm and 1000 h at 2.0 mA/cm and 1.0 mAh/cm. Meanwhile, the rate performance of Zn//MnO and Zn//NHVO full cells are also enhanced by the LiF coating. This work provides a horizon for the design of artificial protective layer and promotes the large-scale practical development of AZIBs.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"17 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly reversible Zn anode by guiding uniform Zn deposition through LiF protective layer\",\"authors\":\"Siying Zhao, Ruixin Huojia, Tian Tian, Xiaotong Liu, Haoqing Tang, Qiang Weng, Tao Liu\",\"doi\":\"10.1016/j.mtener.2024.101674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep-seated issues such as ineluctable dendrite deposition and parasitic reaction of Zn anode pose a major obstacle to the commercialization of aqueous zinc ion batteries (AZIBs). Herein, we proposed LiF as a solid-electrolyte interphase for highly reversible Zn anode. Combining experimental analyses and theoretical simulation calculations, the electronegative fluorine atoms could provide uniform zincophilic nucleation sites to regulate Zn deposition behavior. Additionally, a ZnF layer with outstanding Zn conductive can be formed thus further shielding bulk water molecules and expediting the Zn transfer kinetics. Therefore, the LiF@Zn symmetric cells manifest long-cycling stability with 650 h at 1.0 mA/cm and 1.0 mAh/cm and 1000 h at 2.0 mA/cm and 1.0 mAh/cm. Meanwhile, the rate performance of Zn//MnO and Zn//NHVO full cells are also enhanced by the LiF coating. This work provides a horizon for the design of artificial protective layer and promotes the large-scale practical development of AZIBs.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101674\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101674","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Highly reversible Zn anode by guiding uniform Zn deposition through LiF protective layer
Deep-seated issues such as ineluctable dendrite deposition and parasitic reaction of Zn anode pose a major obstacle to the commercialization of aqueous zinc ion batteries (AZIBs). Herein, we proposed LiF as a solid-electrolyte interphase for highly reversible Zn anode. Combining experimental analyses and theoretical simulation calculations, the electronegative fluorine atoms could provide uniform zincophilic nucleation sites to regulate Zn deposition behavior. Additionally, a ZnF layer with outstanding Zn conductive can be formed thus further shielding bulk water molecules and expediting the Zn transfer kinetics. Therefore, the LiF@Zn symmetric cells manifest long-cycling stability with 650 h at 1.0 mA/cm and 1.0 mAh/cm and 1000 h at 2.0 mA/cm and 1.0 mAh/cm. Meanwhile, the rate performance of Zn//MnO and Zn//NHVO full cells are also enhanced by the LiF coating. This work provides a horizon for the design of artificial protective layer and promotes the large-scale practical development of AZIBs.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials