确定 Sc 和 Al-Alloyed β-Ga2O3 晶体中 β 到 γ 的相变机制

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-19 DOI:10.1021/acsaelm.4c00762
Andrew R. Balog, Channyung Lee, Daniel Duarte-Ruiz, Sai Venkata Gayathri Ayyagari, Jani Jesenovec, Adrian E. Chmielewski, Leixin Miao, Benjamin L. Dutton, John McCloy, Caterina Cocchi, Elif Ertekin, Nasim Alem
{"title":"确定 Sc 和 Al-Alloyed β-Ga2O3 晶体中 β 到 γ 的相变机制","authors":"Andrew R. Balog, Channyung Lee, Daniel Duarte-Ruiz, Sai Venkata Gayathri Ayyagari, Jani Jesenovec, Adrian E. Chmielewski, Leixin Miao, Benjamin L. Dutton, John McCloy, Caterina Cocchi, Elif Ertekin, Nasim Alem","doi":"10.1021/acsaelm.4c00762","DOIUrl":null,"url":null,"abstract":"β-Ga<sub>2</sub>O<sub>3</sub> is a promising ultrawide bandgap semiconductor for next-generation power electronics, but the unintended formation of γ-Ga<sub>2</sub>O<sub>3</sub> in β-Ga<sub>2</sub>O<sub>3</sub> crystals has been observed in a variety of situations. Such defective inclusions, resulting from growth kinetics or ion-induced damage, can degrade the material performance and alter the local electronic structure. Previous studies have only examined the presence of γ-Ga<sub>2</sub>O<sub>3</sub> in β-Ga<sub>2</sub>O<sub>3</sub> thin-film structures. In this work, we observe the ubiquitous formation of a thin γ-Ga<sub>2</sub>O<sub>3</sub> layer on the surface of mechanically exfoliated melt grown Al- and Sc-alloyed β-Ga<sub>2</sub>O<sub>3</sub> single crystals and characterize the atomic scale structure across the interface using scanning transmission electron microscopy. Direct imaging paired with electron diffraction confirms γ-Ga<sub>2</sub>O<sub>3</sub> formation, and orientation relationships are determined across the interface. Electron energy loss spectroscopy identifies the O K-edge spectral fingerprint of γ-Ga<sub>2</sub>O<sub>3</sub>, while many-body perturbation theory on top of density functional theory explains the shift of the spectral intensity between β- and γ-Ga<sub>2</sub>O<sub>3</sub> as an interplay of excitonic and electronic effects. Further first-principles studies evaluate the role of strain on phase stability and identify that at an 8.5% tensile strain, γ-Ga<sub>2</sub>O<sub>3</sub> becomes energetically favored over β-Ga<sub>2</sub>O<sub>3</sub>. Stabilization of the β phase of Ga<sub>2</sub>O<sub>3</sub> under compressive stress is further confirmed through electron diffraction studies of the regions surrounding Vickers indentations. Phase stability is also observed to be independent of the alloying element. These findings confirm the capability for γ-Ga<sub>2</sub>O<sub>3</sub> to occur under extreme environments while also providing evidence that strain is the underlying driving force causing the phase transformation.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the β to γ Phase Transformation Mechanism in Sc- and Al-Alloyed β-Ga2O3 Crystals\",\"authors\":\"Andrew R. Balog, Channyung Lee, Daniel Duarte-Ruiz, Sai Venkata Gayathri Ayyagari, Jani Jesenovec, Adrian E. Chmielewski, Leixin Miao, Benjamin L. Dutton, John McCloy, Caterina Cocchi, Elif Ertekin, Nasim Alem\",\"doi\":\"10.1021/acsaelm.4c00762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"β-Ga<sub>2</sub>O<sub>3</sub> is a promising ultrawide bandgap semiconductor for next-generation power electronics, but the unintended formation of γ-Ga<sub>2</sub>O<sub>3</sub> in β-Ga<sub>2</sub>O<sub>3</sub> crystals has been observed in a variety of situations. Such defective inclusions, resulting from growth kinetics or ion-induced damage, can degrade the material performance and alter the local electronic structure. Previous studies have only examined the presence of γ-Ga<sub>2</sub>O<sub>3</sub> in β-Ga<sub>2</sub>O<sub>3</sub> thin-film structures. In this work, we observe the ubiquitous formation of a thin γ-Ga<sub>2</sub>O<sub>3</sub> layer on the surface of mechanically exfoliated melt grown Al- and Sc-alloyed β-Ga<sub>2</sub>O<sub>3</sub> single crystals and characterize the atomic scale structure across the interface using scanning transmission electron microscopy. Direct imaging paired with electron diffraction confirms γ-Ga<sub>2</sub>O<sub>3</sub> formation, and orientation relationships are determined across the interface. Electron energy loss spectroscopy identifies the O K-edge spectral fingerprint of γ-Ga<sub>2</sub>O<sub>3</sub>, while many-body perturbation theory on top of density functional theory explains the shift of the spectral intensity between β- and γ-Ga<sub>2</sub>O<sub>3</sub> as an interplay of excitonic and electronic effects. Further first-principles studies evaluate the role of strain on phase stability and identify that at an 8.5% tensile strain, γ-Ga<sub>2</sub>O<sub>3</sub> becomes energetically favored over β-Ga<sub>2</sub>O<sub>3</sub>. Stabilization of the β phase of Ga<sub>2</sub>O<sub>3</sub> under compressive stress is further confirmed through electron diffraction studies of the regions surrounding Vickers indentations. Phase stability is also observed to be independent of the alloying element. These findings confirm the capability for γ-Ga<sub>2</sub>O<sub>3</sub> to occur under extreme environments while also providing evidence that strain is the underlying driving force causing the phase transformation.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsaelm.4c00762\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaelm.4c00762","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

β-Ga2O3是一种很有前途的超宽带隙半导体,可用于下一代电力电子器件,但在多种情况下,β-Ga2O3晶体中会意外形成γ-Ga2O3。由于生长动力学或离子诱导损伤而产生的这种缺陷夹杂物会降低材料的性能并改变局部电子结构。以往的研究只考察了 γ-Ga2O3 在 β-Ga2O3 薄膜结构中的存在情况。在这项工作中,我们观察到机械剥离熔融生长的 Al- 和 Sc- 铝合金 β-Ga2O3 单晶表面无处不在地形成了一层薄薄的 γ-Ga2O3 层,并利用扫描透射电子显微镜对整个界面的原子尺度结构进行了表征。直接成像和电子衍射证实了 γ-Ga2O3 的形成,并确定了整个界面的取向关系。电子能量损失光谱确定了γ-Ga2O3 的 O K 边光谱指纹,而密度泛函理论之上的多体扰动理论则解释了β-和γ-Ga2O3 之间光谱强度的变化是激子效应和电子效应的相互作用。进一步的第一原理研究评估了应变对相稳定性的作用,发现在 8.5% 的拉伸应变下,γ-Ga2O3 在能量上比 β-Ga2O3 更受青睐。通过对维氏压痕周围区域进行电子衍射研究,进一步证实了 Ga2O3 的 β 相在压缩应力下的稳定性。还观察到相的稳定性与合金元素无关。这些发现证实了 γ-Ga2O3 在极端环境下发生相变的能力,同时也提供了应变是导致相变的基本驱动力的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of the β to γ Phase Transformation Mechanism in Sc- and Al-Alloyed β-Ga2O3 Crystals
β-Ga2O3 is a promising ultrawide bandgap semiconductor for next-generation power electronics, but the unintended formation of γ-Ga2O3 in β-Ga2O3 crystals has been observed in a variety of situations. Such defective inclusions, resulting from growth kinetics or ion-induced damage, can degrade the material performance and alter the local electronic structure. Previous studies have only examined the presence of γ-Ga2O3 in β-Ga2O3 thin-film structures. In this work, we observe the ubiquitous formation of a thin γ-Ga2O3 layer on the surface of mechanically exfoliated melt grown Al- and Sc-alloyed β-Ga2O3 single crystals and characterize the atomic scale structure across the interface using scanning transmission electron microscopy. Direct imaging paired with electron diffraction confirms γ-Ga2O3 formation, and orientation relationships are determined across the interface. Electron energy loss spectroscopy identifies the O K-edge spectral fingerprint of γ-Ga2O3, while many-body perturbation theory on top of density functional theory explains the shift of the spectral intensity between β- and γ-Ga2O3 as an interplay of excitonic and electronic effects. Further first-principles studies evaluate the role of strain on phase stability and identify that at an 8.5% tensile strain, γ-Ga2O3 becomes energetically favored over β-Ga2O3. Stabilization of the β phase of Ga2O3 under compressive stress is further confirmed through electron diffraction studies of the regions surrounding Vickers indentations. Phase stability is also observed to be independent of the alloying element. These findings confirm the capability for γ-Ga2O3 to occur under extreme environments while also providing evidence that strain is the underlying driving force causing the phase transformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Issue Publication Information Issue Editorial Masthead Room Temperature Real Air Highly Sensitive and Selective Detection of Ethanol and Ammonia Molecules Using Tin Nanoparticle-Functionalized Graphene Sensors Two-Dimensional Magnetic Semiconductors by Substitutional Doping of Monolayer PtS2 Green Durable Biomechanical Sensor Based on a Cation-Enhanced Hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1