AutoIRT:利用自动机器学习校准项目反应理论模型

James Sharpnack, Phoebe Mulcaire, Klinton Bicknell, Geoff LaFlair, Kevin Yancey
{"title":"AutoIRT:利用自动机器学习校准项目反应理论模型","authors":"James Sharpnack, Phoebe Mulcaire, Klinton Bicknell, Geoff LaFlair, Kevin Yancey","doi":"arxiv-2409.08823","DOIUrl":null,"url":null,"abstract":"Item response theory (IRT) is a class of interpretable factor models that are\nwidely used in computerized adaptive tests (CATs), such as language proficiency\ntests. Traditionally, these are fit using parametric mixed effects models on\nthe probability of a test taker getting the correct answer to a test item\n(i.e., question). Neural net extensions of these models, such as BertIRT,\nrequire specialized architectures and parameter tuning. We propose a multistage\nfitting procedure that is compatible with out-of-the-box Automated Machine\nLearning (AutoML) tools. It is based on a Monte Carlo EM (MCEM) outer loop with\na two stage inner loop, which trains a non-parametric AutoML grade model using\nitem features followed by an item specific parametric model. This greatly\naccelerates the modeling workflow for scoring tests. We demonstrate its\neffectiveness by applying it to the Duolingo English Test, a high stakes,\nonline English proficiency test. We show that the resulting model is typically\nmore well calibrated, gets better predictive performance, and more accurate\nscores than existing methods (non-explanatory IRT models and explanatory IRT\nmodels like BERT-IRT). Along the way, we provide a brief survey of machine\nlearning methods for calibration of item parameters for CATs.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AutoIRT: Calibrating Item Response Theory Models with Automated Machine Learning\",\"authors\":\"James Sharpnack, Phoebe Mulcaire, Klinton Bicknell, Geoff LaFlair, Kevin Yancey\",\"doi\":\"arxiv-2409.08823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Item response theory (IRT) is a class of interpretable factor models that are\\nwidely used in computerized adaptive tests (CATs), such as language proficiency\\ntests. Traditionally, these are fit using parametric mixed effects models on\\nthe probability of a test taker getting the correct answer to a test item\\n(i.e., question). Neural net extensions of these models, such as BertIRT,\\nrequire specialized architectures and parameter tuning. We propose a multistage\\nfitting procedure that is compatible with out-of-the-box Automated Machine\\nLearning (AutoML) tools. It is based on a Monte Carlo EM (MCEM) outer loop with\\na two stage inner loop, which trains a non-parametric AutoML grade model using\\nitem features followed by an item specific parametric model. This greatly\\naccelerates the modeling workflow for scoring tests. We demonstrate its\\neffectiveness by applying it to the Duolingo English Test, a high stakes,\\nonline English proficiency test. We show that the resulting model is typically\\nmore well calibrated, gets better predictive performance, and more accurate\\nscores than existing methods (non-explanatory IRT models and explanatory IRT\\nmodels like BERT-IRT). Along the way, we provide a brief survey of machine\\nlearning methods for calibration of item parameters for CATs.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

项目反应理论(IRT)是一类可解释的因素模型,广泛应用于计算机化自适应测试(CAT),如语言能力测试。传统上,这些模型使用参数混合效应模型来拟合应试者得到测试项目(即问题)正确答案的概率。这些模型的神经网络扩展(如 BertIRT)需要专门的架构和参数调整。我们提出了一种与开箱即用的自动机器学习(AutoML)工具兼容的多阶段拟合程序。它基于蒙特卡罗电磁(MCEM)外循环和两阶段内循环,利用项目特征训练非参数 AutoML 等级模型,然后再训练特定项目参数模型。这大大加快了测试评分的建模工作流程。我们将其应用于 Duolingo 英语测试(一种高风险的在线英语水平测试),证明了它的有效性。我们表明,与现有方法(非解释性 IRT 模型和解释性 IRT 模型,如 BERT-IRT)相比,所得到的模型通常校准得更好,预测性能更高,评分也更准确。此外,我们还简要介绍了用于校准 CAT 项目参数的机器学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AutoIRT: Calibrating Item Response Theory Models with Automated Machine Learning
Item response theory (IRT) is a class of interpretable factor models that are widely used in computerized adaptive tests (CATs), such as language proficiency tests. Traditionally, these are fit using parametric mixed effects models on the probability of a test taker getting the correct answer to a test item (i.e., question). Neural net extensions of these models, such as BertIRT, require specialized architectures and parameter tuning. We propose a multistage fitting procedure that is compatible with out-of-the-box Automated Machine Learning (AutoML) tools. It is based on a Monte Carlo EM (MCEM) outer loop with a two stage inner loop, which trains a non-parametric AutoML grade model using item features followed by an item specific parametric model. This greatly accelerates the modeling workflow for scoring tests. We demonstrate its effectiveness by applying it to the Duolingo English Test, a high stakes, online English proficiency test. We show that the resulting model is typically more well calibrated, gets better predictive performance, and more accurate scores than existing methods (non-explanatory IRT models and explanatory IRT models like BERT-IRT). Along the way, we provide a brief survey of machine learning methods for calibration of item parameters for CATs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian estimation of the number of significant principal components for cultural data Optimal Visual Search with Highly Heuristic Decision Rules Who's the GOAT? Sports Rankings and Data-Driven Random Walks on the Symmetric Group Conformity assessment of processes and lots in the framework of JCGM 106:2012 Equity considerations in COVID-19 vaccine allocation modelling: a literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1