弹性基础设施网络:通过 L1 细分最小二乘法识别稀疏边缘变化

Rajasekhar Anguluri
{"title":"弹性基础设施网络:通过 L1 细分最小二乘法识别稀疏边缘变化","authors":"Rajasekhar Anguluri","doi":"arxiv-2409.08304","DOIUrl":null,"url":null,"abstract":"Adversarial actions and a rapid climate change are disrupting operations of\ninfrastructure networks (e.g., energy, water, and transportation systems).\nUnaddressed disruptions lead to system-wide shutdowns, emphasizing the need for\nquick and robust identification methods. One significant disruption arises from\nedge changes (addition or deletion) in networks. We present an $\\ell_1$-norm\nregularized least-squares framework to identify multiple but sparse edge\nchanges using noisy data. We focus only on networks that obey equilibrium\nequations, as commonly observed in the above sectors. The presence or lack of\nedges in these networks is captured by the sparsity pattern of the weighted,\nsymmetric Laplacian matrix, while noisy data are node injections and\npotentials. Our proposed framework systematically leverages the inherent\nstructure within the Laplacian matrix, effectively avoiding\noverparameterization. We demonstrate the robustness and efficacy of the\nproposed approach through a series of representative examples, with a primary\nemphasis on power networks.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":"393 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilient Infrastructure Network: Sparse Edge Change Identification via L1-Regularized Least Squares\",\"authors\":\"Rajasekhar Anguluri\",\"doi\":\"arxiv-2409.08304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adversarial actions and a rapid climate change are disrupting operations of\\ninfrastructure networks (e.g., energy, water, and transportation systems).\\nUnaddressed disruptions lead to system-wide shutdowns, emphasizing the need for\\nquick and robust identification methods. One significant disruption arises from\\nedge changes (addition or deletion) in networks. We present an $\\\\ell_1$-norm\\nregularized least-squares framework to identify multiple but sparse edge\\nchanges using noisy data. We focus only on networks that obey equilibrium\\nequations, as commonly observed in the above sectors. The presence or lack of\\nedges in these networks is captured by the sparsity pattern of the weighted,\\nsymmetric Laplacian matrix, while noisy data are node injections and\\npotentials. Our proposed framework systematically leverages the inherent\\nstructure within the Laplacian matrix, effectively avoiding\\noverparameterization. We demonstrate the robustness and efficacy of the\\nproposed approach through a series of representative examples, with a primary\\nemphasis on power networks.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":\"393 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对抗性行动和快速的气候变化正在干扰基础设施网络(如能源、水和交通系统)的运行。网络中的边缘变化(添加或删除)会造成严重破坏。我们提出了一个 $\ell_1$ 正则化最小二乘法框架,利用噪声数据识别多重但稀疏的边缘变化。我们只关注遵守平衡方程的网络,如上述领域中常见的网络。这些网络中是否存在边是通过加权对称拉普拉奇矩阵的稀疏模式来捕捉的,而噪声数据则是节点注入和势能。我们提出的框架系统地利用了拉普拉斯矩阵的固有结构,有效避免了过度参数化。我们通过一系列具有代表性的示例,展示了所提方法的鲁棒性和有效性,主要侧重于电力网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resilient Infrastructure Network: Sparse Edge Change Identification via L1-Regularized Least Squares
Adversarial actions and a rapid climate change are disrupting operations of infrastructure networks (e.g., energy, water, and transportation systems). Unaddressed disruptions lead to system-wide shutdowns, emphasizing the need for quick and robust identification methods. One significant disruption arises from edge changes (addition or deletion) in networks. We present an $\ell_1$-norm regularized least-squares framework to identify multiple but sparse edge changes using noisy data. We focus only on networks that obey equilibrium equations, as commonly observed in the above sectors. The presence or lack of edges in these networks is captured by the sparsity pattern of the weighted, symmetric Laplacian matrix, while noisy data are node injections and potentials. Our proposed framework systematically leverages the inherent structure within the Laplacian matrix, effectively avoiding overparameterization. We demonstrate the robustness and efficacy of the proposed approach through a series of representative examples, with a primary emphasis on power networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian estimation of the number of significant principal components for cultural data Optimal Visual Search with Highly Heuristic Decision Rules Who's the GOAT? Sports Rankings and Data-Driven Random Walks on the Symmetric Group Conformity assessment of processes and lots in the framework of JCGM 106:2012 Equity considerations in COVID-19 vaccine allocation modelling: a literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1