溪流网络数据的空间占用模型

Olivier Gimenez
{"title":"溪流网络数据的空间占用模型","authors":"Olivier Gimenez","doi":"arxiv-2409.10017","DOIUrl":null,"url":null,"abstract":"To effectively monitor biodiversity in streams and rivers, we need to\nquantify species distribution accurately. Occupancy models are useful for\ndistinguishing between the non-detection of a species and its actual absence.\nWhile these models can account for spatial autocorrelation, they are not suited\nfor streams and rivers due to their unique network spatial structure. Here, I\npropose spatial occupancy models specifically designed for data collected on\nstream and river networks. I present the statistical developments and\nillustrate their application using data on a semi-aquatic mammal. Overall,\nspatial stream network occupancy models offer a robust method for assessing\nbiodiversity in freshwater ecosystems.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial occupancy models for data collected on stream networks\",\"authors\":\"Olivier Gimenez\",\"doi\":\"arxiv-2409.10017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To effectively monitor biodiversity in streams and rivers, we need to\\nquantify species distribution accurately. Occupancy models are useful for\\ndistinguishing between the non-detection of a species and its actual absence.\\nWhile these models can account for spatial autocorrelation, they are not suited\\nfor streams and rivers due to their unique network spatial structure. Here, I\\npropose spatial occupancy models specifically designed for data collected on\\nstream and river networks. I present the statistical developments and\\nillustrate their application using data on a semi-aquatic mammal. Overall,\\nspatial stream network occupancy models offer a robust method for assessing\\nbiodiversity in freshwater ecosystems.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了有效监测溪流和河流中的生物多样性,我们需要准确量化物种分布。虽然这些模型可以考虑空间自相关性,但由于溪流和河流独特的网络空间结构,它们并不适合溪流和河流。在此,我提出了专门针对在溪流和河流网络中收集的数据而设计的空间占据模型。我介绍了统计方面的发展,并用一种半水生哺乳动物的数据说明了这些模型的应用。总之,空间河网占有率模型为评估淡水生态系统的生物多样性提供了一种可靠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial occupancy models for data collected on stream networks
To effectively monitor biodiversity in streams and rivers, we need to quantify species distribution accurately. Occupancy models are useful for distinguishing between the non-detection of a species and its actual absence. While these models can account for spatial autocorrelation, they are not suited for streams and rivers due to their unique network spatial structure. Here, I propose spatial occupancy models specifically designed for data collected on stream and river networks. I present the statistical developments and illustrate their application using data on a semi-aquatic mammal. Overall, spatial stream network occupancy models offer a robust method for assessing biodiversity in freshwater ecosystems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian estimation of the number of significant principal components for cultural data Optimal Visual Search with Highly Heuristic Decision Rules Who's the GOAT? Sports Rankings and Data-Driven Random Walks on the Symmetric Group Conformity assessment of processes and lots in the framework of JCGM 106:2012 Equity considerations in COVID-19 vaccine allocation modelling: a literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1