锂离子电池降解中的微粒与 SEI 裂纹建模:为什么不能简单地添加日历老化和循环老化

IF 3.1 4区 工程技术 Q2 ELECTROCHEMISTRY Journal of The Electrochemical Society Pub Date : 2024-09-16 DOI:10.1149/1945-7111/ad76da
Alexander Karger, Simon E. J. O’Kane, Marcel Rogge, Cedric Kirst, Jan P. Singer, Monica Marinescu, Gregory J. Offer and Andreas Jossen
{"title":"锂离子电池降解中的微粒与 SEI 裂纹建模:为什么不能简单地添加日历老化和循环老化","authors":"Alexander Karger, Simon E. J. O’Kane, Marcel Rogge, Cedric Kirst, Jan P. Singer, Monica Marinescu, Gregory J. Offer and Andreas Jossen","doi":"10.1149/1945-7111/ad76da","DOIUrl":null,"url":null,"abstract":"Degradation models are important tools for understanding and mitigating lithium-ion battery aging, yet a universal model that can predict degradation under all operating conditions remains elusive. One challenge is the coupled influence of calendar and cycle aging phases on degradation mechanisms, such as solid electrolyte interphase (SEI) formation. In this work, we identify and systematically compare three different SEI interaction theories found in the literature, and apply them to experimental degradation data from a commercial lithium-ion cell. In a step-by-step process, and after careful data selection, we show that SEI delamination without any cracking of the active particles, and SEI microcracking, where cycling only affects SEI growth during the cycle itself, are both unlikely candidates. Instead, the results indicate that upon cycling, both the SEI and the active particle crack, and we provide a simple, 4-parameter equation that can predict the particle crack rate. Contrary to the widely-accepted Paris’ law, the particle crack rate decreases with increasing cycles, potentially due to changing intercalation dynamics resulting from the increasing surface-to-volume ratio of the active particles. The proposed model predicts SEI formation accurately at different storage conditions, while simply adding the degradation from pure calendar and cycle aging underestimates the total degradation.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"94 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Particle Versus SEI Cracking in Lithium-Ion Battery Degradation: Why Calendar and Cycle Aging Cannot Simply be Added\",\"authors\":\"Alexander Karger, Simon E. J. O’Kane, Marcel Rogge, Cedric Kirst, Jan P. Singer, Monica Marinescu, Gregory J. Offer and Andreas Jossen\",\"doi\":\"10.1149/1945-7111/ad76da\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Degradation models are important tools for understanding and mitigating lithium-ion battery aging, yet a universal model that can predict degradation under all operating conditions remains elusive. One challenge is the coupled influence of calendar and cycle aging phases on degradation mechanisms, such as solid electrolyte interphase (SEI) formation. In this work, we identify and systematically compare three different SEI interaction theories found in the literature, and apply them to experimental degradation data from a commercial lithium-ion cell. In a step-by-step process, and after careful data selection, we show that SEI delamination without any cracking of the active particles, and SEI microcracking, where cycling only affects SEI growth during the cycle itself, are both unlikely candidates. Instead, the results indicate that upon cycling, both the SEI and the active particle crack, and we provide a simple, 4-parameter equation that can predict the particle crack rate. Contrary to the widely-accepted Paris’ law, the particle crack rate decreases with increasing cycles, potentially due to changing intercalation dynamics resulting from the increasing surface-to-volume ratio of the active particles. The proposed model predicts SEI formation accurately at different storage conditions, while simply adding the degradation from pure calendar and cycle aging underestimates the total degradation.\",\"PeriodicalId\":17364,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad76da\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad76da","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

降解模型是了解和缓解锂离子电池老化的重要工具,然而,能够预测所有工作条件下降解情况的通用模型仍然遥不可及。其中一个挑战是日历和循环老化阶段对降解机制的耦合影响,例如固体电解质相(SEI)的形成。在这项工作中,我们确定并系统比较了文献中三种不同的 SEI 相互作用理论,并将它们应用到商用锂离子电池的实验降解数据中。经过一步步的研究和对数据的仔细筛选,我们发现,没有任何活性颗粒裂纹的 SEI 分层和 SEI 微裂纹(循环仅在循环过程中影响 SEI 的生长)都是不可能的候选理论。相反,结果表明,在循环过程中,SEI 和活性颗粒都会开裂,我们提供了一个简单的 4 参数方程,可以预测颗粒开裂率。与广为接受的帕里斯定律相反,颗粒开裂率会随着循环次数的增加而降低,这可能是由于活性颗粒的表面体积比不断增加,导致插层动力学发生了变化。所提出的模型可以准确预测不同存储条件下 SEI 的形成,而简单地将纯日历和循环老化产生的降解相加,则会低估总降解量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Particle Versus SEI Cracking in Lithium-Ion Battery Degradation: Why Calendar and Cycle Aging Cannot Simply be Added
Degradation models are important tools for understanding and mitigating lithium-ion battery aging, yet a universal model that can predict degradation under all operating conditions remains elusive. One challenge is the coupled influence of calendar and cycle aging phases on degradation mechanisms, such as solid electrolyte interphase (SEI) formation. In this work, we identify and systematically compare three different SEI interaction theories found in the literature, and apply them to experimental degradation data from a commercial lithium-ion cell. In a step-by-step process, and after careful data selection, we show that SEI delamination without any cracking of the active particles, and SEI microcracking, where cycling only affects SEI growth during the cycle itself, are both unlikely candidates. Instead, the results indicate that upon cycling, both the SEI and the active particle crack, and we provide a simple, 4-parameter equation that can predict the particle crack rate. Contrary to the widely-accepted Paris’ law, the particle crack rate decreases with increasing cycles, potentially due to changing intercalation dynamics resulting from the increasing surface-to-volume ratio of the active particles. The proposed model predicts SEI formation accurately at different storage conditions, while simply adding the degradation from pure calendar and cycle aging underestimates the total degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
12.80%
发文量
1369
审稿时长
1.5 months
期刊介绍: The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.
期刊最新文献
Electrochemical HOCl Production Modeling for an Electrochemical Catheter. Comprehensive Analysis of Commercial Sodium-Ion Batteries: Structural and Electrochemical Insights Electrochemical Behaviour of Nickel(II)-Rhenium(VII) And Electrodeposition of Nickel-Rhenium Alloy from Choline Chloride - Urea Deep Eutectic Solvent Optimization of Post-Annealing Temperature of RF Magnetron-Sputtered ZnO Thin Films for Enhancing Performances of UV Photodetectors Spatially Resolved Assessment and Analysis of Al-Zn, Mg, and Mg/Al-Zn Metal-Rich Primers Applied to AA 7075-T651 in Full Immersion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1