利用大型语言模型开发交互式 OpenMP 编程书籍

Xinyao Yi, Anjia Wang, Yonghong Yan, Chunhua Liao
{"title":"利用大型语言模型开发交互式 OpenMP 编程书籍","authors":"Xinyao Yi, Anjia Wang, Yonghong Yan, Chunhua Liao","doi":"arxiv-2409.09296","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to authoring a textbook titled Interactive\nOpenMP Programming with the assistance of Large Language Models (LLMs). The\nwriting process utilized state-of-the-art LLMs, including Gemini Pro 1.5,\nClaude 3, and ChatGPT-4, to generate the initial structure and outline of the\nbook, as well as the initial content for specific chapters. This content\nincluded detailed descriptions of individual OpenMP constructs and practical\nprogramming examples. The outline and content have then undergone extensive\nmanual revisions to meet our book goals. In this paper, we report our findings\nabout the capabilities and limitations of these LLMs. We address critical\nquestions concerning the necessity of textbook resources and the effectiveness\nof LLMs in creating fundamental and practical programming content. Our findings\nsuggest that while LLMs offer significant advantages in generating textbook\ncontent, they require careful integration with traditional educational\nmethodologies to ensure depth, accuracy, and pedagogical effectiveness. The\nInteractive OpenMP Programming book is developed with the framework of Jupyter\nBook, enabling the execution of code within the book from the web browser,\nproviding instant feedback and a dynamic learning experience that stands in\ncontrast to traditional educational resources. The book represents a\nsignificant step towards modernizing programming education, offering insights\ninto practical strategies for generating the textbook through advanced AI\ntools.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing an Interactive OpenMP Programming Book with Large Language Models\",\"authors\":\"Xinyao Yi, Anjia Wang, Yonghong Yan, Chunhua Liao\",\"doi\":\"arxiv-2409.09296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to authoring a textbook titled Interactive\\nOpenMP Programming with the assistance of Large Language Models (LLMs). The\\nwriting process utilized state-of-the-art LLMs, including Gemini Pro 1.5,\\nClaude 3, and ChatGPT-4, to generate the initial structure and outline of the\\nbook, as well as the initial content for specific chapters. This content\\nincluded detailed descriptions of individual OpenMP constructs and practical\\nprogramming examples. The outline and content have then undergone extensive\\nmanual revisions to meet our book goals. In this paper, we report our findings\\nabout the capabilities and limitations of these LLMs. We address critical\\nquestions concerning the necessity of textbook resources and the effectiveness\\nof LLMs in creating fundamental and practical programming content. Our findings\\nsuggest that while LLMs offer significant advantages in generating textbook\\ncontent, they require careful integration with traditional educational\\nmethodologies to ensure depth, accuracy, and pedagogical effectiveness. The\\nInteractive OpenMP Programming book is developed with the framework of Jupyter\\nBook, enabling the execution of code within the book from the web browser,\\nproviding instant feedback and a dynamic learning experience that stands in\\ncontrast to traditional educational resources. The book represents a\\nsignificant step towards modernizing programming education, offering insights\\ninto practical strategies for generating the textbook through advanced AI\\ntools.\",\"PeriodicalId\":501422,\"journal\":{\"name\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种在大型语言模型(LLM)的帮助下编写教科书《InteractiveOpenMP Programming》的方法。编写过程使用了最先进的大型语言模型(包括 Gemini Pro 1.5、Claude 3 和 ChatGPT-4)来生成教科书的初始结构和大纲,以及特定章节的初始内容。这些内容包括各个 OpenMP 结构的详细说明和实际编程示例。随后,我们对大纲和内容进行了大量的修订,以实现本书的目标。在本文中,我们报告了关于这些 LLM 的能力和局限性的研究结果。我们探讨了有关教科书资源的必要性以及 LLM 在创建基础和实用编程内容方面的有效性的关键问题。我们的研究结果表明,虽然 LLM 在生成教科书内容方面具有显著优势,但它们需要与传统教育方法精心整合,以确保深度、准确性和教学效果。交互式 OpenMP 编程》一书是利用 JupyterBook 框架开发的,可以通过网络浏览器执行书中的代码,提供即时反馈和动态学习体验,与传统教育资源形成鲜明对比。本书是编程教育现代化的重要一步,深入探讨了通过先进的人工智能工具生成教科书的实用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing an Interactive OpenMP Programming Book with Large Language Models
This paper presents an approach to authoring a textbook titled Interactive OpenMP Programming with the assistance of Large Language Models (LLMs). The writing process utilized state-of-the-art LLMs, including Gemini Pro 1.5, Claude 3, and ChatGPT-4, to generate the initial structure and outline of the book, as well as the initial content for specific chapters. This content included detailed descriptions of individual OpenMP constructs and practical programming examples. The outline and content have then undergone extensive manual revisions to meet our book goals. In this paper, we report our findings about the capabilities and limitations of these LLMs. We address critical questions concerning the necessity of textbook resources and the effectiveness of LLMs in creating fundamental and practical programming content. Our findings suggest that while LLMs offer significant advantages in generating textbook content, they require careful integration with traditional educational methodologies to ensure depth, accuracy, and pedagogical effectiveness. The Interactive OpenMP Programming book is developed with the framework of Jupyter Book, enabling the execution of code within the book from the web browser, providing instant feedback and a dynamic learning experience that stands in contrast to traditional educational resources. The book represents a significant step towards modernizing programming education, offering insights into practical strategies for generating the textbook through advanced AI tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively parallel CMA-ES with increasing population Communication Lower Bounds and Optimal Algorithms for Symmetric Matrix Computations Energy Efficiency Support for Software Defined Networks: a Serverless Computing Approach CountChain: A Decentralized Oracle Network for Counting Systems Delay Analysis of EIP-4844
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1