Anoop C Sathyadevan Nair, Anju Rajan, K P Adarsh Raj, Abhishek Melarkode Rajendran, Megha Raichal Benny, Kavya Murali, Pattiyil Parameswaran, C S Suchand Sangeeth, Raghu Chatanathodi, Vari Sivaji Reddy
{"title":"通过菲罗啉配位微调有机太阳能电池中氧化锌阴极缓冲层的功函数","authors":"Anoop C Sathyadevan Nair, Anju Rajan, K P Adarsh Raj, Abhishek Melarkode Rajendran, Megha Raichal Benny, Kavya Murali, Pattiyil Parameswaran, C S Suchand Sangeeth, Raghu Chatanathodi, Vari Sivaji Reddy","doi":"10.1021/acsaem.4c02155","DOIUrl":null,"url":null,"abstract":"Zinc oxide (ZnO) is widely used as a cathode buffer layer (CBL) in inverted organic solar cells (OSCs). Performance enhancement of OSCs by work function (WF) reduction of the ZnO CBL is a prominent area of research. Here, we report the role of three phenanthroline ligands, 1,10-phenanthroline (Phen-A), 4,7-phenanthroline (Phen-B), and 1,7-phenanthroline (Phen-C), in reducing the WF of ZnO. Phen-A functionalized ZnO has the lowest WF, which can be attributed to the effective donation of nitrogen lone pairs to the Zn center thereby effectively raising the Fermi energy of the system. Significant improvements in efficiency and stability have been experimentally demonstrated by using functionalized ZnO thin films as the CBLs in PTB7:PC<sub>70</sub>BM-based OSCs. The X-ray photoelectron spectroscopy analysis revealed the formation of a Zn–N bond and a significant reduction in oxygen deficiency defects due to the functionalization of the ZnO surface with phenanthroline ligands. The density functional theory results confirmed the formation of strong N–Zn bonding with adsorption energies −2.05, −1.77, and −1.33 eV for Phen-A, Phen-B, and Phen-C, respectively. The improved interfacial properties due to functionalization of the ZnO surface resulted in 13.2, 7.8, and 6.7% enhancement in power conversion efficiency for Phen-A, Phen-B, and Phen-C, respectively.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine Tuning the Work Function of ZnO Cathode Buffer Layers in Organic Solar Cells by Phenanthroline Coordination\",\"authors\":\"Anoop C Sathyadevan Nair, Anju Rajan, K P Adarsh Raj, Abhishek Melarkode Rajendran, Megha Raichal Benny, Kavya Murali, Pattiyil Parameswaran, C S Suchand Sangeeth, Raghu Chatanathodi, Vari Sivaji Reddy\",\"doi\":\"10.1021/acsaem.4c02155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zinc oxide (ZnO) is widely used as a cathode buffer layer (CBL) in inverted organic solar cells (OSCs). Performance enhancement of OSCs by work function (WF) reduction of the ZnO CBL is a prominent area of research. Here, we report the role of three phenanthroline ligands, 1,10-phenanthroline (Phen-A), 4,7-phenanthroline (Phen-B), and 1,7-phenanthroline (Phen-C), in reducing the WF of ZnO. Phen-A functionalized ZnO has the lowest WF, which can be attributed to the effective donation of nitrogen lone pairs to the Zn center thereby effectively raising the Fermi energy of the system. Significant improvements in efficiency and stability have been experimentally demonstrated by using functionalized ZnO thin films as the CBLs in PTB7:PC<sub>70</sub>BM-based OSCs. The X-ray photoelectron spectroscopy analysis revealed the formation of a Zn–N bond and a significant reduction in oxygen deficiency defects due to the functionalization of the ZnO surface with phenanthroline ligands. The density functional theory results confirmed the formation of strong N–Zn bonding with adsorption energies −2.05, −1.77, and −1.33 eV for Phen-A, Phen-B, and Phen-C, respectively. The improved interfacial properties due to functionalization of the ZnO surface resulted in 13.2, 7.8, and 6.7% enhancement in power conversion efficiency for Phen-A, Phen-B, and Phen-C, respectively.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsaem.4c02155\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaem.4c02155","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fine Tuning the Work Function of ZnO Cathode Buffer Layers in Organic Solar Cells by Phenanthroline Coordination
Zinc oxide (ZnO) is widely used as a cathode buffer layer (CBL) in inverted organic solar cells (OSCs). Performance enhancement of OSCs by work function (WF) reduction of the ZnO CBL is a prominent area of research. Here, we report the role of three phenanthroline ligands, 1,10-phenanthroline (Phen-A), 4,7-phenanthroline (Phen-B), and 1,7-phenanthroline (Phen-C), in reducing the WF of ZnO. Phen-A functionalized ZnO has the lowest WF, which can be attributed to the effective donation of nitrogen lone pairs to the Zn center thereby effectively raising the Fermi energy of the system. Significant improvements in efficiency and stability have been experimentally demonstrated by using functionalized ZnO thin films as the CBLs in PTB7:PC70BM-based OSCs. The X-ray photoelectron spectroscopy analysis revealed the formation of a Zn–N bond and a significant reduction in oxygen deficiency defects due to the functionalization of the ZnO surface with phenanthroline ligands. The density functional theory results confirmed the formation of strong N–Zn bonding with adsorption energies −2.05, −1.77, and −1.33 eV for Phen-A, Phen-B, and Phen-C, respectively. The improved interfacial properties due to functionalization of the ZnO surface resulted in 13.2, 7.8, and 6.7% enhancement in power conversion efficiency for Phen-A, Phen-B, and Phen-C, respectively.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.