高导电性 PBTTT 薄膜的掺杂调节

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2024-09-18 DOI:10.1016/j.xcrp.2024.102197
Yanwei Fan, Jie Liu, Ping-An Chen, Dongdong Xia, Jiawei Wang, Yuanyuan Hu, Zitong Liu, Yunqi Liu, Lang Jiang
{"title":"高导电性 PBTTT 薄膜的掺杂调节","authors":"Yanwei Fan, Jie Liu, Ping-An Chen, Dongdong Xia, Jiawei Wang, Yuanyuan Hu, Zitong Liu, Yunqi Liu, Lang Jiang","doi":"10.1016/j.xcrp.2024.102197","DOIUrl":null,"url":null,"abstract":"<p>Doping is a key strategy for enhancing the charge mobility and thermoelectric properties of polymers. While advancements utilizing the anion exchange technique have notably enhanced doping efficiency, there is a need for further optimization of the doping process. This study introduces a two-step doping approach combining solid-state diffusion with anion exchange, applied to poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTTC14) films. Initial 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ) diffusion doping followed by anion exchange with F4TCNQ/ionic liquid achieved higher conductivity than one-step anion exchange doping. Spectral and structural analyses elucidated the enhanced doping mechanism. Additionally, adjusting the molecular weight (MW) of PBTTTC14 from 11,867 to 175,199 improved doping levels and conductivity, reaching 1,103.8 S cm<sup>−1</sup>. A medium MW (MW = 99,407) optimized thermoelectric performance by balancing conductivity and Seebeck coefficients. These findings provide insights into controlling doping and performance of conductive semiconductor polymers through a two-step doping process and MW engineering.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doping regulation of highly conductive PBTTT films\",\"authors\":\"Yanwei Fan, Jie Liu, Ping-An Chen, Dongdong Xia, Jiawei Wang, Yuanyuan Hu, Zitong Liu, Yunqi Liu, Lang Jiang\",\"doi\":\"10.1016/j.xcrp.2024.102197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Doping is a key strategy for enhancing the charge mobility and thermoelectric properties of polymers. While advancements utilizing the anion exchange technique have notably enhanced doping efficiency, there is a need for further optimization of the doping process. This study introduces a two-step doping approach combining solid-state diffusion with anion exchange, applied to poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTTC14) films. Initial 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ) diffusion doping followed by anion exchange with F4TCNQ/ionic liquid achieved higher conductivity than one-step anion exchange doping. Spectral and structural analyses elucidated the enhanced doping mechanism. Additionally, adjusting the molecular weight (MW) of PBTTTC14 from 11,867 to 175,199 improved doping levels and conductivity, reaching 1,103.8 S cm<sup>−1</sup>. A medium MW (MW = 99,407) optimized thermoelectric performance by balancing conductivity and Seebeck coefficients. These findings provide insights into controlling doping and performance of conductive semiconductor polymers through a two-step doping process and MW engineering.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102197\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102197","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

掺杂是提高聚合物电荷迁移率和热电特性的关键策略。虽然阴离子交换技术的进步显著提高了掺杂效率,但仍需进一步优化掺杂过程。本研究介绍了一种结合固态扩散和阴离子交换的两步掺杂方法,并将其应用于聚[2,5-双(3-十四烷基噻吩-2-基)噻吩并[3,2-b]噻吩](PBTTTC14)薄膜。与一步式阴离子交换掺杂相比,先进行 2,3,5,6-四氟-7,7,8,8-四氰基二甲烷(F4TCNQ)扩散掺杂,然后用 F4TCNQ/阴离子液体进行阴离子交换,可获得更高的电导率。光谱和结构分析阐明了增强掺杂的机理。此外,将 PBTTTC14 的分子量(MW)从 11,867 调整到 175,199 也提高了掺杂水平和电导率,达到 1,103.8 S cm-1。中等分子量(MW = 99,407)通过平衡电导率和塞贝克系数优化了热电性能。这些发现为通过两步掺杂工艺和兆瓦工程来控制导电半导体聚合物的掺杂和性能提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Doping regulation of highly conductive PBTTT films

Doping is a key strategy for enhancing the charge mobility and thermoelectric properties of polymers. While advancements utilizing the anion exchange technique have notably enhanced doping efficiency, there is a need for further optimization of the doping process. This study introduces a two-step doping approach combining solid-state diffusion with anion exchange, applied to poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTTC14) films. Initial 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ) diffusion doping followed by anion exchange with F4TCNQ/ionic liquid achieved higher conductivity than one-step anion exchange doping. Spectral and structural analyses elucidated the enhanced doping mechanism. Additionally, adjusting the molecular weight (MW) of PBTTTC14 from 11,867 to 175,199 improved doping levels and conductivity, reaching 1,103.8 S cm−1. A medium MW (MW = 99,407) optimized thermoelectric performance by balancing conductivity and Seebeck coefficients. These findings provide insights into controlling doping and performance of conductive semiconductor polymers through a two-step doping process and MW engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems 4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface Deformation of collagen-based tissues investigated using a systematic review and meta-analysis of synchrotron x-ray scattering studies Catalysis for plastic deconstruction and upcycling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1