M2R-Whisper:多阶段、多尺度检索增强技术,用于增强耳语功能

Jiaming Zhou, Shiwan Zhao, Jiabei He, Hui Wang, Wenjia Zeng, Yong Chen, Haoqin Sun, Aobo Kong, Yong Qin
{"title":"M2R-Whisper:多阶段、多尺度检索增强技术,用于增强耳语功能","authors":"Jiaming Zhou, Shiwan Zhao, Jiabei He, Hui Wang, Wenjia Zeng, Yong Chen, Haoqin Sun, Aobo Kong, Yong Qin","doi":"arxiv-2409.11889","DOIUrl":null,"url":null,"abstract":"State-of-the-art models like OpenAI's Whisper exhibit strong performance in\nmultilingual automatic speech recognition (ASR), but they still face challenges\nin accurately recognizing diverse subdialects. In this paper, we propose\nM2R-whisper, a novel multi-stage and multi-scale retrieval augmentation\napproach designed to enhance ASR performance in low-resource settings. Building\non the principles of in-context learning (ICL) and retrieval-augmented\ntechniques, our method employs sentence-level ICL in the pre-processing stage\nto harness contextual information, while integrating token-level k-Nearest\nNeighbors (kNN) retrieval as a post-processing step to further refine the final\noutput distribution. By synergistically combining sentence-level and\ntoken-level retrieval strategies, M2R-whisper effectively mitigates various\ntypes of recognition errors. Experiments conducted on Mandarin and subdialect\ndatasets, including AISHELL-1 and KeSpeech, demonstrate substantial\nimprovements in ASR accuracy, all achieved without any parameter updates.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M2R-Whisper: Multi-stage and Multi-scale Retrieval Augmentation for Enhancing Whisper\",\"authors\":\"Jiaming Zhou, Shiwan Zhao, Jiabei He, Hui Wang, Wenjia Zeng, Yong Chen, Haoqin Sun, Aobo Kong, Yong Qin\",\"doi\":\"arxiv-2409.11889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art models like OpenAI's Whisper exhibit strong performance in\\nmultilingual automatic speech recognition (ASR), but they still face challenges\\nin accurately recognizing diverse subdialects. In this paper, we propose\\nM2R-whisper, a novel multi-stage and multi-scale retrieval augmentation\\napproach designed to enhance ASR performance in low-resource settings. Building\\non the principles of in-context learning (ICL) and retrieval-augmented\\ntechniques, our method employs sentence-level ICL in the pre-processing stage\\nto harness contextual information, while integrating token-level k-Nearest\\nNeighbors (kNN) retrieval as a post-processing step to further refine the final\\noutput distribution. By synergistically combining sentence-level and\\ntoken-level retrieval strategies, M2R-whisper effectively mitigates various\\ntypes of recognition errors. Experiments conducted on Mandarin and subdialect\\ndatasets, including AISHELL-1 and KeSpeech, demonstrate substantial\\nimprovements in ASR accuracy, all achieved without any parameter updates.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

OpenAI 的 Whisper 等最先进的模型在多语种自动语音识别(ASR)方面表现出强劲的性能,但在准确识别不同的子方言方面仍面临挑战。在本文中,我们提出了M2R-whisper,这是一种新颖的多阶段、多尺度检索增强方法,旨在提高低资源环境下的自动语音识别性能。基于上下文学习(ICL)和检索增强技术的原理,我们的方法在预处理阶段采用句子级 ICL 来利用上下文信息,同时将标记级 k-最近邻(kNN)检索整合为后处理步骤,以进一步完善最终输出分布。通过协同结合句子级和标记级检索策略,M2R-whisper 有效地减少了各种类型的识别错误。在普通话和亚方言数据集(包括 AISHELL-1 和 KeSpeech)上进行的实验表明,M2R-whisper 的 ASR 准确率大幅提高,而这一切都无需任何参数更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
M2R-Whisper: Multi-stage and Multi-scale Retrieval Augmentation for Enhancing Whisper
State-of-the-art models like OpenAI's Whisper exhibit strong performance in multilingual automatic speech recognition (ASR), but they still face challenges in accurately recognizing diverse subdialects. In this paper, we propose M2R-whisper, a novel multi-stage and multi-scale retrieval augmentation approach designed to enhance ASR performance in low-resource settings. Building on the principles of in-context learning (ICL) and retrieval-augmented techniques, our method employs sentence-level ICL in the pre-processing stage to harness contextual information, while integrating token-level k-Nearest Neighbors (kNN) retrieval as a post-processing step to further refine the final output distribution. By synergistically combining sentence-level and token-level retrieval strategies, M2R-whisper effectively mitigates various types of recognition errors. Experiments conducted on Mandarin and subdialect datasets, including AISHELL-1 and KeSpeech, demonstrate substantial improvements in ASR accuracy, all achieved without any parameter updates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring an Inter-Pausal Unit (IPU) based Approach for Indic End-to-End TTS Systems Conformal Prediction for Manifold-based Source Localization with Gaussian Processes Insights into the Incorporation of Signal Information in Binaural Signal Matching with Wearable Microphone Arrays Dense-TSNet: Dense Connected Two-Stage Structure for Ultra-Lightweight Speech Enhancement Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1